CHAPTER TEST

Evaluate the expression.

1. $7 + 3^2 \cdot 2$	2. $(5^2 + 17) \div 7$	3. $(24 - 11) - (3 + 2) \div 4$
4. $\frac{x}{5}$ when $x = 30$	5. n^3 when $n = 20$	6. $15 - t$ when $t = 11$
7. $12 + 4x$ when $x = 1\frac{1}{2}$	8. $3z^2 - 7$ when $z = 6$	9. $2(4n + 5)$ when $n = 2$

Write an expression, an equation, or an inequality.

- **10.** The sum of 19 and the cube of a number *x*
- **11.** The product of 3 and a number *y* is no more than 21.
- **12.** Twice the difference of a number *z* and 12 is equal to 10.

Check whether the given number is a solution of the equation or inequality.

13. $2 + 3x = 10; 2$	14. 8 + 3 <i>b</i> > 15; 2	15. $11y - 5 \le 30; 3$
-----------------------------	-----------------------------------	--------------------------------

- 16. Perform the operation 15.2 feet \times 2.4 feet. Write the answer with the correct number of significant digits.
- 17. Refer to the graph.
 - a. *Explain* why the graph represents a function.
 - **b.** Identify the domain and the range.
 - **c.** Write a rule for the function.
- 18. FOOD PREPARATION You buy tomatoes at \$1.29 per pound and peppers at \$3.99 per pound to make salsa. Write an expression for the total cost of the ingredients. Then find the total cost of 5 pounds of tomatoes and 2 pounds of peppers.

- **19. CAR EXPENSES** A family determined the average cost of maintaining and operating the family car to be about \$.30 per mile. On one trip, the family drove at an average rate of 50 miles per hour for a total of 6.5 hours. On a second trip, they drove at an average rate of 55 miles per hour for a total of 6 hours. Which trip cost more? How much more?
- **20.** SHOE SIZES A man's size 6 shoe is the same size as a woman's size $7\frac{1}{2}$.

The table shows other corresponding sizes of men's and women's shoes.

Men's size, x	6	$6\frac{1}{2}$	7	$7\frac{1}{2}$	8	$8\frac{1}{2}$	9
Women's size, y	$7\frac{1}{2}$	8	$8\frac{1}{2}$	9	9 <u>1</u>	10	$10\frac{1}{2}$

- **a.** Using the data in the table, write a rule for women's shoe size as a function of men's shoe size. Identify the domain and the range.
- **b.** Graph the function.