\qquad

LESSON

Challenge Practice

For use with the lesson "Represent Functions as Rules and Tables"

1. Make a table for the function $y=3 x^{2}+2$. Determine the domain values corresponding to range values of $2,5,14$, and 29 .
2. Make a table for the function $y=2 x^{3}+1$. Determine the domain values corresponding to range values of $3,17,55$, and 251 .
3. The function $y=x^{2}+1$ has the following table associated with it.

Input, \boldsymbol{x}	-2	-1	0	1	2	3
Output, \boldsymbol{y}	5	2	1	2	5	10

Suppose the function is reversed, making y the input and x the output. You would have to remove some of the values of y from the table in order to have x be a function of y. What would be the minimum number of y-values you would have to remove from the table in order to have x be a function of y ?
4. Refer to Exercise 3. What y-values would you have to remove from the table?
5. Consider the table for a function.

Input, \boldsymbol{x}	-2	-1	n	1	2	3
Output, \boldsymbol{y}	3	4	4	6	5	10

For what value of n would this table represent x as a function of y ?

