CHAPTER REVIEW

REVIEW KEY VOCABULARY

- outcome, event
- sample space
- probability of an event
- theoretical, experimental probability
- odds in favor, odds against

VOCABULARY EXERCISES

Copy and complete the statement.

- **1.** An event that combines two or more events is a(n) <u>?</u>.
- **2.** A possible result of an experiment is a(n) <u>?</u>.
- 3. WRITING Compare theoretical probability and experimental probability.

REVIEW EXAMPLES AND EXERCISES

Use the review examples and exercises below to check your understanding of the concepts you have learned in each lesson of this chapter.

11.1 **Find Probabilities and Odds**

EXAMPLE

A bag contains 15 red checkers and 15 black checkers. You choose a checker at random. Find the probability that you choose a black checker.

 $P(\text{black checker}) = \frac{\text{Number of black checkers}}{\text{Total number of checkers}} = \frac{15}{30} = \frac{1}{2}$

EXERCISES

- **EXAMPLE 2** for Exs. 4-5
- 4. CHECKERS In the example above, suppose an extra red checker is added to the bag. Find the probability of randomly choosing a black checker.
 - 5. BAG OF LETTERS A bag contains tiles. Each tile has one letter from the word HAPPINESS on it. You choose a tile at random. What is the probability that you choose a tile with the letter S?

- permutation
- n factorial
- combination
- compound events
- overlapping events
- · disjoint or mutually exclusive events

@HomeTutor my.hrw.com

 Multi-Language Glossary Vocabulary Practice

- independent events
- dependent events
- conditional probability

my.hrw.com **Chapter Review Practice**

Find Probabilities Using Permutations

EXAMPLE

You need to enter a 4 digit code in order to enter the building where you work. The digits are 4 different numbers from 1 to 5. You forgot the code and try to guess it. Find the probability that you guess correctly.

STEP 1 Write the number of possible outcomes as the number of permutations of 4 out of the 5 possible digits. This is ${}_{5}P_{4}$.

$${}_{5}P_{4} = \frac{5!}{(5-4)!} = \frac{5!}{1!} = 5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$$

step 2 Find the probability. Because only one of the permutations is the

correct code, the probability that you guess the correct code is $\frac{1}{120}$.

EXERCISES

EXAMPLE 2 for Exs. 6–10

Evaluate the expression.

- 7. $_{6}P_{2}$ 8. ${}_{8}P_{5}$ 6. $_7P_6$ 9. ${}_{13}P_{10}$
- 10. MUSIC You downloaded 6 songs. You randomly choose 4 of these songs to play. Find the probability that you play the first 4 songs you downloaded in the order in which you downloaded them.

Find Probabilities Using Combinations 11.3

EXAMPLE

For your government class, you must choose 3 states in the United States to research. You may choose your states from the 6 New England states. How many combinations of states are possible?

The order in which you choose the states is not important. So, to find the number of combinations of 6 states taken 3 at a time, find ${}_{6}C_{3}$.

$$_{6}C_{3} = \frac{6!}{(6-3)! \cdot 3!}$$
 Combinations formula
= $\frac{6 \cdot 5 \cdot 4 \cdot 3!}{3! \cdot (3 \cdot 2 \cdot 1)}$ Expand factorials.
= 20 Simplify.

EXERCISES

Evaluate the expression.

11. $_7C_6$

- **12.** ${}_{6}C_{2}$ **13.** ${}_{8}C_{5}$ 14. ${}_{13}C_{10}$ 15. TICKETS You win 5 tickets to a concert. In how many ways can you
 - choose 4 friends out of a group of 9 to take with you to the concert?

CHAPTER REVIEW

11.4 **Probabilities of Disjoint and Overlapping Events**

EXAMPLE

Let *A* and *B* be events such that $P(A) = \frac{2}{3}$, $P(B) = \frac{1}{2}$, and $P(A \text{ and } B) = \frac{1}{3}$. Find P(A or B).

 $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) = \frac{2}{3} + \frac{1}{2} - \frac{1}{3} = \frac{5}{6}$

EXERCISES

EXAMPLES 2 and 4 for Exs. 16-18

Let A and B be events such that P(A) = 0.32, P(B) = 0.48, and P(A and B) =0.12. Find the indicated probability.

17. $P(\overline{A})$ **18.** $P(\overline{B})$ **16.** *P*(*A* or *B*)

11.5 **Probabilities of Independent and Dependent Events**

EXAMPLE

Find the probability of selecting a club and then another club from a standard deck of 52 cards if (a) you replace the first card before selecting the second, and (b) you do not replace the first card.

Let event *A* be "the first card is a club" and *B* be "the second card is a club."

a. $P(A \text{ and } B) = P(A) \cdot P(B) = \frac{13}{52} \cdot \frac{13}{52} = \frac{1}{16} = 0.0625$

b. $P(A \text{ and } B) = P(A) \cdot P(B|A) = \frac{13}{52} \cdot \frac{12}{51} = \frac{1}{17} \approx 0.0588$

EXERCISES

EXAMPLE 5 for Exs. 19-21

Find the probability of randomly selecting the given marbles from a bag of 5 red, 8 green, and 3 blue marbles if (a) you replace the first marble before drawing the second and (b) you do not replace the first marble.

19. red, then green **20.** blue, then red

21. green, then green