\qquad

LESSON
11.4 Study Guide
For use with the lesson "Find Probabilities of Disjoint and Overlapping Events"

GOAL Find probabilities of compound events.

Vocabulary

The union or intersection of two events is called a compound event.
Two events are overlapping if they have one or more outcomes in common.

Two events are disjoint, or mutually exclusive, if they have no outcomes in common.

EXAMPLE 1 Find probability of disjoint events

A card is randomly selected from a standard deck of 52 cards. What is the probability that it is a 5 or an ace?

Let event A be selecting a 5 and event B be selecting an ace. A has 4 outcomes and B has 4 outcomes. Because A and B are disjoint, the probability is:
$P(A$ or $B)=P(A)+P(B)=\frac{4}{52}+\frac{4}{52}=\frac{8}{52}=\frac{2}{13} \approx 0.154$

EXAMPLE 2 Find probability of overlapping events

A card is randomly selected from a standard deck of $\mathbf{5 2}$ cards. What is the probability that it is a club or a 3?
Let event A be selecting a club and event B be selecting a 3. A has 13 outcomes and B has 4 outcomes. Of these, 1 outcome is common to A and B. The probability of selecting a club or a 3 is:
$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)=\frac{13}{52}+\frac{4}{52}-\frac{1}{52}=\frac{16}{52}=\frac{4}{13} \approx 0.308$

EXAMPLE 3 Use a formula to find P(A and B)

Given $\boldsymbol{P}(\mathbf{A})=\mathbf{0 . 3}, \boldsymbol{P}(\boldsymbol{B})=\mathbf{0 . 7 2}$, and $\boldsymbol{P}(\boldsymbol{A}$ or $\boldsymbol{B})=\mathbf{0 . 6}$, find $\boldsymbol{P}(\mathbf{A}$ and $\boldsymbol{B})$.

$$
\begin{aligned}
P(A \text { or } B) & =P(A)+P(B)-P(A \text { and } B) & & \text { Write general formula. } \\
0.6 & =0.3+0.72-P(A \text { and } B) & & \text { Substitute known probabilities. } \\
P(A \text { and } B) & =0.42 & & \text { Solve for } P(A \text { and } B) .
\end{aligned}
$$

Exercises for Examples 1, 2, and 3

A card is randomly selected from a standard deck of 52 cards. Find the probability of the given event.

1. Selecting a queen or a 4 2. Selecting a spade or a 5
2. Find $P(A$ and $B)$ when $P(A)=0.25, P(B)=0.40$, and $P(A$ or $B)=0.55$.
\qquad

EXAMPLE 4 Find probabilities of complements

When two six-sided dice are rolled, there are 36 possible outcomes. Find the probability of the given event.
a. The sum is less than or equal to 3 .
b. The sum is greater than 3 .

Solution

a. The outcomes for which the sum is less than or equal to 3 are
$(1,1),(2,1)$, and $(1,2)$.
$P($ sum $\leq 3)=\frac{3}{36}=\frac{1}{12} \approx 0.083$
b. $\quad P(\operatorname{sum}>3)=1-P(\operatorname{sum} \leq 3)$

$$
\begin{aligned}
& =1-\frac{1}{12} \\
& =\frac{11}{12} \\
& \approx 0.917
\end{aligned}
$$

EXAMPLE 5 Use a complement in real life

Annual Salary A university conducted a national research study of recipients of PhD degrees. From the research data, the university determined that the probability that these recipients had annual salaries in excess of $\$ 95,000$ was 0.834 . What is the probability that a recipient from the study had an annual salary of $\$ 95,000$ or less?

Solution

The probability that a recipient had an annual salary of $\$ 95,000$ or less is the complement of the event that a recipient had an annual salary in excess of $\$ 95,000$.

$$
\begin{aligned}
P(\text { salary } \leq \$ 95,000) & =1-P(\text { salary }>\$ 95,000) \\
& =1-0.834 \\
& =0.166
\end{aligned}
$$

Exercises for Examples 4 and 5

Find $\boldsymbol{P}(\overline{\boldsymbol{A}})$.

4. $P(A)=0.63$
5. $P(A)=\frac{1}{8}$
6. $P(A)=0.45$
7. $P(A)=0.09$
8. In Example 5 if the probability that the recipients of PhD degrees had annual salaries in excess of $\$ 95,000$ was 0.668 , what is the probability that a recipient from the study had an annual salary of $\$ 95,000$ or less?
