LESSON

Date _

Study Guide

For use with the lesson "Find Probabilities of Disjoint and Overlapping Events"

GOAL Find probabilities of compound events.

Vocabulary

The union or intersection of two events is called a **compound event**.

Two events are **overlapping** if they have one or more outcomes in common.

Two events are **disjoint**, or **mutually exclusive**, if they have no outcomes in common.

EXAMPLE 1 Find probability of disjoint events

A card is randomly selected from a standard deck of 52 cards. What is the probability that it is a 5 *or* an ace?

Let event *A* be selecting a 5 and event *B* be selecting an ace. *A* has 4 outcomes and *B* has 4 outcomes. Because *A* and *B* are disjoint, the probability is:

$$P(A \text{ or } B) = P(A) + P(B) = \frac{4}{52} + \frac{4}{52} = \frac{8}{52} = \frac{2}{13} \approx 0.154$$

EXAMPLE2 Find probability of overlapping events

A card is randomly selected from a standard deck of 52 cards. What is the probability that it is a club *or* a 3?

Let event *A* be selecting a club and event *B* be selecting a 3. *A* has 13 outcomes and *B* has 4 outcomes. Of these, 1 outcome is common to *A* and *B*. The probability of selecting a club *or* a 3 is:

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) = \frac{13}{52} + \frac{4}{52} - \frac{1}{52} = \frac{16}{52} = \frac{4}{13} \approx 0.308$$

EXAMPLE3 Use a formula to find *P*(*A* and *B*)

Given $P(A) = 0.3$, $P(B) = 0.72$, and $P(A)$	or <i>B</i>) = 0.6, find <i>P</i> (<i>A</i> and <i>B</i>).
P(A or B) = P(A) + P(B) - P(A and B)	Write general formula.

0.6 = 0.3 + 0.72 - P(A and B)	Substitute known probabilities.
---------------------------------	---------------------------------

P(A and B) = 0.42

Solve for P(A and B).

Exercises for Examples 1, 2, and 3

A card is randomly selected from a standard deck of 52 cards. Find the probability of the given event.

- Selecting a queen or a 4
 Selecting a spade or a 5
- **3.** Find P(A and B) when P(A) = 0.25, P(B) = 0.40, and P(A or B) = 0.55.

Date _

11-44 Chapter Resource Book

Name

LESSON

Study Guide continued

11.4 For use with the lesson "Find Probabilities of Disjoint and Overlapping Events"

Find probabilities of complements EXAMPLE 4

When two six-sided dice are rolled, there are 36 possible outcomes. Find the probability of the given event.

- **a.** The sum is less than or equal to 3.
- **b.** The sum is greater than 3.

Solution

a. The outcomes for which the sum is less than or equal to 3 are (1, 1), (2, 1), and (1, 2).

$$P(\text{sum} \le 3) = \frac{3}{36} = \frac{1}{12} \approx 0.083$$

b.
$$P(sum > 3) = 1 - P(sum \le 3)$$

$$= 1 - \frac{1}{12}$$
$$= \frac{11}{12}$$
$$\approx 0.917$$

EXAMPLE 5 Use a complement in real life

Annual Salary A university conducted a national research study of recipients of PhD degrees. From the research data, the university determined that the probability that these recipients had annual salaries in excess of \$95,000 was 0.834. What is the probability that a recipient from the study had an annual salary of \$95,000 or less?

Solution

The probability that a recipient had an annual salary of \$95,000 or less is the complement of the event that a recipient had an annual salary in excess of \$95,000.

$$P(\text{salary} \le \$95,000) = 1 - P(\text{salary} > \$95,000)$$

$$= 1 - 0.834$$

 $= 0.166$

Exercises for Examples 4 and 5

Find $P(\overline{A})$.

- **5.** $P(A) = \frac{1}{8}$ **4.** P(A) = 0.63**7.** P(A) = 0.096. P(A) = 0.45
- **8.** In Example 5 if the probability that the recipients of PhD degrees had annual salaries in excess of \$95,000 was 0.668, what is the probability that a recipient from the study had an annual salary of \$95,000 or less?

