Deciding When to Use Cross Products

KEY CONCEPT

Rewrite Equations in order to Solve Using Cross Products

A proportion is a special type of equation where one ratio is equal to a second ratio. Proportions can be solved using cross products. Other equations containing ratios can be solved using cross products if you first rewrite them as proportions.

Determine whether an equation is written **EXAMPLE 1** as a proportion

Determine whether each equation is written as a proportion.

a.
$$\frac{y}{9} - \frac{5}{12} = \frac{1}{6}$$

b.
$$\frac{3}{b+4} = \frac{7}{b}$$

Solution:

- **a.** The equation $\frac{y}{9} \frac{5}{12} = \frac{1}{6}$ is not a written as a proportion because the expression to the left of the equal sign is not in the form of a single ratio.
- **b.** The equation $\frac{3}{h+4} = \frac{7}{h}$ is written as a proportion because the expressions on both sides of the equal sign are single ratios. ■

Some equations can be rewritten as proportions as shown in the next example.

EXAMPLE2 Rewrite an equation as a proportion

Rewrite each equation as a proportion.

a.
$$\frac{x+2}{3} - \frac{x+1}{4} = 0$$
 b. $\frac{8}{p} = \frac{7}{10} + \frac{1}{5}$ **c.** $\frac{m}{2} = 6$

b.
$$\frac{8}{p} = \frac{7}{10} + \frac{1}{5}$$

c.
$$\frac{m}{2} = 6$$

Solution:

a. The equation $\frac{x+2}{3} - \frac{x+1}{4} = 0$ can be written as a proportion by adding $\frac{x+1}{4}$

$$\frac{x+2}{3} - \frac{x+1}{4} = 0$$

$$\frac{x+2}{3} - \frac{x+1}{4} + \frac{x+1}{4} = 0 + \frac{x+1}{4}$$

$$\frac{x+2}{3} = \frac{x+1}{4}$$

Pre-AP Copymasters

2

Deciding When to Use Cross Products continued

b. The equation $\frac{8}{p} = \frac{7}{10} + \frac{1}{5}$ can be written as a proportion by expressing the sum of the fractions on the right side of the equal sign as a single fraction.

$$\frac{8}{p} = \frac{7}{10} + \frac{1}{5}$$

$$\frac{8}{p} = \frac{7}{10} + \frac{2}{10}$$

$$\frac{8}{p} = \frac{9}{10}$$

c. The equation $\frac{m}{2} = 6$ can be written as a proportion by expressing 6 as the ratio $\frac{6}{1}$.

$$\frac{m}{2} = \frac{6}{1} \blacksquare$$

After an equation is rewritten as a proportion, we can use cross products to solve the equation.

EXAMPLE 3 Solve an equation using cross products

Solve the equation $\frac{x+2}{3} - \frac{x+1}{4} = 0$ using cross products.

Solution:

We first need to rewrite the equation as a proportion. This was done in Example 2. Then we use cross products to eliminate the fractions from the equation.

$$\frac{x+2}{3} = \frac{x+1}{4}$$

$$4(x+2) = 3(x+1)$$

$$4x + 8 = 3x + 3$$

$$x + 8 = 3$$

$$x = -5$$

The solution is -5. Check the solution by substituting -5 into the original equation.

Practice

Determine whether each equation is written as a proportion.

1.
$$\frac{x}{4} - \frac{3}{5} = 0$$

2.
$$\frac{5}{y} - \frac{6}{11} = 0$$

3.
$$\frac{s}{8} - \frac{1}{2} = \frac{s}{4}$$

4.
$$\frac{1}{t} - \frac{3}{8} = \frac{5}{8}$$

5.
$$\frac{x+9}{7} = \frac{x}{6}$$

6.
$$\frac{1}{h-2} = \frac{2}{h}$$

7.
$$\frac{4}{b+2} - \frac{1}{b} = 0$$

1.
$$\frac{x}{4} - \frac{3}{5} = 0$$
 2. $\frac{5}{y} - \frac{6}{11} = 0$ **3.** $\frac{s}{8} - \frac{1}{2} = \frac{s}{4}$ **4.** $\frac{1}{t} - \frac{3}{8} = \frac{5}{8}$ **5.** $\frac{x+9}{7} = \frac{x}{6}$ **6.** $\frac{1}{h-2} = \frac{2}{h}$ **7.** $\frac{4}{b+2} - \frac{1}{b} = 0$ **8.** $\frac{3+g}{2} - \frac{g}{3} = 0$

Deciding When to Use Cross Products continued

Rewrite each equation as a proportion. Then solve the equation using cross products.

9.
$$\frac{x}{8} - \frac{3}{4} = 0$$

10.
$$\frac{c}{14} + \frac{5}{7} = 0$$

11.
$$\frac{3}{5} + \frac{d}{25} = 0$$

9.
$$\frac{x}{8} - \frac{3}{4} = 0$$
 10. $\frac{c}{14} + \frac{5}{7} = 0$ **11.** $\frac{3}{5} + \frac{d}{25} = 0$ **12.** $\frac{1}{6} - \frac{w}{24} = 0$

13.
$$\frac{10}{y} + \frac{5}{16} = 0$$

14.
$$\frac{9}{v} - \frac{3}{7} = 0$$

15.
$$\frac{6}{11} - \frac{12}{b} = 0$$

13.
$$\frac{10}{y} + \frac{5}{16} = 0$$
 14. $\frac{9}{v} - \frac{3}{7} = 0$ **15.** $\frac{6}{11} - \frac{12}{b} = 0$ **16.** $\frac{7}{13} + \frac{63}{g} = 0$

17.
$$\frac{z}{4} = 3 - \frac{1}{2}$$

18.
$$\frac{m}{6} = 2 - \frac{1}{3}$$

19.
$$\frac{1}{y} = \frac{1}{7} - \frac{1}{8}$$

17.
$$\frac{z}{4} = 3 - \frac{1}{2}$$
 18. $\frac{m}{6} = 2 - \frac{1}{3}$ **19.** $\frac{1}{y} = \frac{1}{7} - \frac{1}{8}$ **20.** $\frac{1}{d} = \frac{1}{8} - \frac{1}{9}$

21.
$$\frac{x+1}{2} = 8$$

22.
$$\frac{x+2}{5} = 3$$

23.
$$\frac{10}{h+2} = 2$$

21.
$$\frac{x+1}{2} = 8$$
 22. $\frac{x+2}{5} = 3$ **23.** $\frac{10}{h+2} = 2$ **24.** $\frac{25}{h-9} = 5$

25.
$$\frac{y}{3} = y$$

26.
$$\frac{m}{5} = m$$

27.
$$\frac{k+2}{3} = k$$

25.
$$\frac{y}{3} = y$$
 26. $\frac{m}{5} = m$ **27.** $\frac{k+2}{3} = k$ **28.** $\frac{\ell-3}{4} = \ell$

29.
$$\frac{z-1}{3} - \frac{z+1}{2} = 0$$

30.
$$\frac{r+1}{5} - \frac{r-1}{4} = 0$$

31.
$$\frac{m+2}{3} + \frac{m-5}{2} = 0$$

32.
$$\frac{b-5}{2} + \frac{b+1}{5} = 0$$

33.
$$\frac{p-5}{p-6} - \frac{1}{2} = 0$$

34.
$$\frac{x+1}{x+2} + \frac{2}{3} = 0$$

35.
$$\frac{1}{v-5} - \frac{1}{2v-4} = 0$$

36.
$$\frac{1}{t-4} - \frac{1}{2t+5} = 0$$

Write an equation for each sentence. Then rewrite the equation as a proportion, if necessary. Solve the proportion using cross products.

37. The sum of the quotient of x and 4 and the quotient of 2 and 3 is 0.

The sum of the quotient of y and 5 and the quotient of 3 and 4 is 0.

The difference between the quotient of a and 2 and the quotient of 4 and 5 is 0.

The difference between the quotient of b and 6 and the quotient of 1 and 7 is 0.

41. When the quantity x + 5 is divided by 8, the result equals $\frac{1}{2}$.

42. When the quantity y-1 is divided by 10, the result equals $\frac{2}{5}$

43. The quotient of 4 and the quantity d+2 equals $-\frac{1}{3}$.

44. The quotient of 5 and the quantity n+1 equals $-\frac{1}{4}$.

Pre-AP Copymasters