$\qquad$

## Deciding When to Use Cross Products

## KEY CONCEPT

## Rewrite Equations in order to Solve Using Cross Products

A proportion is a special type of equation where one ratio is equal to a second ratio. Proportions can be solved using cross products. Other equations containing ratios can be solved using cross products if you first rewrite them as proportions.

## EXAMPLE 1 Determine whether an equation is written as a proportion

Determine whether each equation is written as a proportion.
a. $\frac{y}{9}-\frac{5}{12}=\frac{1}{6}$
b. $\frac{3}{b+4}=\frac{7}{b}$

## Solution:

a. The equation $\frac{y}{9}-\frac{5}{12}=\frac{1}{6}$ is not a written as a proportion because the expression to the left of the equal sign is not in the form of a single ratio.
b. The equation $\frac{3}{b+4}=\frac{7}{b}$ is written as a proportion because the expressions on both sides of the equal sign are single ratios.

Some equations can be rewritten as proportions as shown in the next example.

## EXAMPLE 2 Rewrite an equation as a proportion

Rewrite each equation as a proportion.
a. $\frac{x+2}{3}-\frac{x+1}{4}=0$
b. $\frac{8}{p}=\frac{7}{10}+\frac{1}{5}$
c. $\frac{m}{2}=6$

## Solution:

a. The equation $\frac{x+2}{3}-\frac{x+1}{4}=0$ can be written as a proportion by adding $\frac{x+1}{4}$ to each side.

$$
\begin{aligned}
\frac{x+2}{3}-\frac{x+1}{4} & =0 \\
\frac{x+2}{3}-\frac{x+1}{4}+\frac{x+1}{4} & =0+\frac{x+1}{4} \\
\frac{x+2}{3} & =\frac{x+1}{4}
\end{aligned}
$$

$\qquad$

## CHAPTER <br> 2 <br> Deciding When to Use Cross Products continued

b. The equation $\frac{8}{p}=\frac{7}{10}+\frac{1}{5}$ can be written as a proportion by expressing the sum of the fractions on the right side of the equal sign as a single fraction.
$\frac{8}{p}=\frac{7}{10}+\frac{1}{5}$
$\frac{8}{p}=\frac{7}{10}+\frac{2}{10}$
$\frac{8}{p}=\frac{9}{10}$
c. The equation $\frac{m}{2}=6$ can be written as a proportion by expressing 6 as the ratio $\frac{6}{1}$.

$$
\frac{m}{2}=\frac{6}{1}
$$

After an equation is rewritten as a proportion, we can use cross products to solve the equation.

## EXAMPLE 3 Solve an equation using cross products

Solve the equation $\frac{x+2}{3}-\frac{x+1}{4}=0$ using cross products.

## Solution:

We first need to rewrite the equation as a proportion. This was done in Example 2.
Then we use cross products to eliminate the fractions from the equation.

$$
\begin{aligned}
\frac{x+2}{3} & =\frac{x+1}{4} \\
4(x+2) & =3(x+1) \\
4 x+8 & =3 x+3 \\
x+8 & =3 \\
x & =-5
\end{aligned}
$$

The solution is -5 . Check the solution by substituting -5 into the original equation.

## Practice

Determine whether each equation is written as a proportion.

1. $\frac{x}{4}-\frac{3}{5}=0$
2. $\frac{5}{y}-\frac{6}{11}=0$
3. $\frac{s}{8}-\frac{1}{2}=\frac{s}{4}$
4. $\frac{1}{t}-\frac{3}{8}=\frac{5}{8}$
5. $\frac{x+9}{7}=\frac{x}{6}$
6. $\frac{1}{h-2}=\frac{2}{h}$
7. $\frac{4}{b+2}-\frac{1}{b}=0$
8. $\frac{3+g}{2}-\frac{g}{3}=0$
$\qquad$

## CHAPTER <br> 2 <br> continued

Rewrite each equation as a proportion. Then solve the equation using cross products.
9. $\frac{x}{8}-\frac{3}{4}=0$
10. $\frac{c}{14}+\frac{5}{7}=0$
11. $\frac{3}{5}+\frac{d}{25}=0$
12. $\frac{1}{6}-\frac{w}{24}=0$
13. $\frac{10}{y}+\frac{5}{16}=0$
14. $\frac{9}{v}-\frac{3}{7}=0$
15. $\frac{6}{11}-\frac{12}{b}=0$
16. $\frac{7}{13}+\frac{63}{g}=0$
17. $\frac{z}{4}=3-\frac{1}{2}$
18. $\frac{m}{6}=2-\frac{1}{3}$
19. $\frac{1}{y}=\frac{1}{7}-\frac{1}{8}$
20. $\frac{1}{d}=\frac{1}{8}-\frac{1}{9}$
21. $\frac{x+1}{2}=8$
22. $\frac{x+2}{5}=3$
23. $\frac{10}{h+2}=2$
24. $\frac{25}{n-9}=5$
25. $\frac{y}{3}=y$
26. $\frac{m}{5}=m$
27. $\frac{k+2}{3}=k$
28. $\frac{\ell-3}{4}=\ell$
29. $\frac{z-1}{3}-\frac{z+1}{2}=0$
30. $\frac{r+1}{5}-\frac{r-1}{4}=0$
31. $\frac{m+2}{3}+\frac{m-5}{2}=0$
32. $\frac{b-5}{2}+\frac{b+1}{5}=0$
33. $\frac{p-5}{p-6}-\frac{1}{2}=0$
34. $\frac{x+1}{x+2}+\frac{2}{3}=0$
35. $\frac{1}{y-5}-\frac{1}{2 y-4}=0$
36. $\frac{1}{t-4}-\frac{1}{2 t+5}=0$

Write an equation for each sentence. Then rewrite the equation as a proportion, if necessary. Solve the proportion using cross products.
37. The sum of the quotient of $x$ and 4 and the quotient of 2 and 3 is 0 .
38. The sum of the quotient of $y$ and 5 and the quotient of 3 and 4 is 0 .
39. The difference between the quotient of $a$ and 2 and the quotient of 4 and 5 is 0 .
40. The difference between the quotient of $b$ and 6 and the quotient of 1 and 7 is 0 .
41. When the quantity $x+5$ is divided by 8 , the result equals $\frac{1}{2}$.
42. When the quantity $y-1$ is divided by 10 , the result equals $\frac{2}{5}$.
43. The quotient of 4 and the quantity $d+2$ equals $-\frac{1}{3}$.
44. The quotient of 5 and the quantity $n+1$ equals $-\frac{1}{4}$.

