CHAPTER
 2
 Identifying the Domain of a Variable in
 a Formula

For most formulas modeling real-life situations, there are natural restrictions on the values that may be used for the variables in the formula. For a formula, the set of all values that may be meaningfully substituted for any variable in the formula is called the domain of that variable.

EXAMPLE 1 Identify the domain of a variable in a formula

Find the domain of each variable in the formula for the area of a rectangle, $A=\ell w$.

Solution:

The formula $A=\ell w$ models the area A of a rectangle, where ℓ represents the length of the rectangle and w represents its width. Because neither the length nor the width of a rectangle can be either negative or zero, the values of ℓ and w cannot be either negative or zero. It is also true that the value of A cannot be negative or zero. Therefore, each of the variables, A, ℓ, and w in the formula has the set of all positive real numbers as its
 domain.

EXAMPLE 2 Identify the domain of a variable in a formula

Suppose you have a rectangular yard that is 20 feet by 30 feet, and you want to create a rectangular garden within the yard as shown in the figure. Find the domain of each variable in the formula for the area of the garden, $A=\ell w$.

Solution:

As in Example 1, the values of ℓ and w cannot be either negative or zero. The length ℓ cannot be greater than 30 ft and the width w cannot be greater than 20 ft , since the garden must be within the yard. Therefore, the area of the garden A cannot be greater than $(30 \mathrm{ft}) \cdot(20 \mathrm{ft})=600 \mathrm{ft}^{2}$. The domain of ℓ is the set of positive real numbers less than or equal to 30 , the domain of w is the set of positive real numbers less than or equal to 20 , and the domain of A is the set of positive real numbers less than or equal to 600 .

In the previous example, the domains of the variables were given as a range of real numbers. In some real-world situations, the domain of a variable can be further restricted to discrete values such as whole numbers or multiples of whole numbers.

Algebra 1

${ }_{2}^{\text {Сиарев }}$ Identifying the Domain of a Variable in
 a Formula continued

EXAMPLE 3 Identify the domain of a variable in a formula

The formula $C=8.50 x$ models the cost C in dollars for x adults to see a movie. Find the domain of the variable x.

Solution:

In this situation, the variable x represents a number of people. This number cannot be negative. It also cannot be irrational or a rational number that is not a whole number: $\sqrt{ } 3$ people and 4.5 people are both meaningless. The domain of the variable x in the formula $C=8.50 x$ is the set of whole numbers.

Before substituting a value for a variable in a formula, always ask whether the number is a meaningful value for the variable.

Practice

Find the domain of each variable in the formula.

1. Perimeter of a rectangle: $P=2 \ell+2 w$
2. Speed given distance and time: $s=\frac{d}{t}$
3. Volume of a rectangular prism: $V=\ell w h$
4. Volume of a cube: $V=s^{3}$
5. Density given mass and volume: $d=\frac{m}{v}$
6. Circumference of a circle: $c=\pi d$

Problem Solving

7. Suppose you have a square region that is 20 feet wide and 20 feet long and you wish to put a circular pool within that region. Find the domain of each variable in the formula for the area of the pool, $A=\pi r^{2}$.
8. Suppose you drive a car that gets 20 miles per gallon and the capacity of the tank is 14 gallons. The distance driven is given by the formula $d=20 \mathrm{~g}$. Find the domain of each variable in the formula assuming that the tank is not refilled.
9. The formula $R=30 x$ models the revenue R in dollars for selling x shirts. Find the domain of the variable x.
10. To use a gym for two weeks, you pay a sign-up fee of $\$ 30$ and $\$ 5$ for each day you use the gym. The formula $C=30+5 d$ models the $\operatorname{cost} C$ in dollars for going d days over the two week period. Find the domain of the variable d.
11. What are the possible values of the variable C in the formula $C=8.50 x$ from Example 3?
12. What are the possible values of the variable R in the formula $R=30 x$ from Exercise 9?
13. What are the possible values of the variable C in the formula $C=30+5 d$ from Exercise 10 ?
