Name .

LESSON

Date _

Study Guide

For use with the lesson "Plot Points in a Coordinate Plane"

GOAL Identify and plot points in a coordinate plane.

Vocabulary

The coordinate plane can be divided into four regions called **quadrants**, labeled I, II, III, and IV.

EXAMPLE 1 Name points in a coordinate plane

Give the coordinates of the point.

a. A

b. *B*

Solution

- **a.** Point *A* is 2 units to the right of the origin and 3 units down. So, the *x*-coordinate is 2, and the *y*-coordinate is -3. The coordinates are (2, -3).
- **b.** Point *B* is 3 units to the left of the origin and 2 units up. So, the *x*-coordinate is -3, and the *y*-coordinate is 2. The coordinates are (-3, 2).

Exercises for Example 1

Use the coordinate plane in Example 1 to give the coordinates of the point.

1. *C* **2.** *D* **3.** *E*

EXAMPLE2 Plot points in a coordinate plane

Plot the point in a coordinate plane. Describe the location of the point.

a. A(1, -3)

b. B(-2, -2)

c. C(-3, 0)

Solution

- **a.** Begin at the origin. First move 1 unit to the right, then 3 units down. Point *A* is in Quadrant IV.
- **b.** Begin at the origin. First move 2 units to the left, then 2 units down. Point *B* is in Quadrant III.
- **c.** Begin at the origin. First move 3 units to the left. Point *C* is on the *x*-axis.

LESSON

3.1

Date _

Study Guide continued

For use with the lesson "Plot Points in a Coordinate Plane"

Exercises for Example 2

Plot the points in a coordinate plane. Describe the location of the point.

4. A(3, 5) **5.** B(-1, -4) **6.** C(4, -2)

EXAMPLE3 Graph a function

Graph the function $y = \frac{1}{2}x + 2$ with domain -6, -4, -2, 0, and 2. Then identify the range of the function.

Solution

STEP 1 Make a table by substituting the domain values into the function.

x	$y=\frac{1}{2}x+2$
-6	$y = \frac{1}{2}(-6) + 2 = -1$
-4	$y = \frac{1}{2}(-4) + 2 = 0$
-2	$y = \frac{1}{2}(-2) + 2 = 1$
0	$y = \frac{1}{2}(0) + 2 = 2$
2	$y = \frac{1}{2}(2) + 2 = 3$

STEP 2 List the ordered pairs: (-6, -1), (-4, 0), (-2, 1), (0, 2), and (2, 3). Then graph the function.

STEP 3 Identify the range. The range consists of the *y*-values from the table: -1, 0, 1, 2, and 3.

Exercise for Example 3

7. Graph the function y = -2x + 3 with domain -2, -1, 0, 1, and 2. Then identify the range of the function.