\qquad

GOAL Graph linear equations in a coordinate plane.

Vocabulary

A solution of an equation in two variables in x and y is an ordered pair (x, y) that produces a true statement when the values of x and y are substituted into the equation.

The graph of an equation in two variables is the set of points in a coordinate plane that represents all solutions of the equation.

A linear equation is an equation whose graph is a line.
The standard form of a linear equation is $A x+B y=C$ where A, B, and C are real numbers and A and B are not both zero.

The equation $A x+B y=C$ represents a linear function provided $B \neq 0$ (that is, provided the graph of the equation is not a vertical line).

EXAMPLE 1 Standardized Test Practice

Which ordered pair is a solution of $\frac{1}{2} x+y=3$?
(A) $(-2,4)$
(B) $(2,3)$
(C) $(0,4)$
(D) $(4,-1)$

Solution

Check whether each ordered pair is a solution of the equation.

$$
\begin{array}{rlrl}
\text { Test }(-2,4): & & \frac{1}{2} x+y & =3 \\
& & \text { Write original equation. } \\
\frac{1}{2}(-2)+4 \stackrel{?}{=} 3 & & \text { Substitute }-2 \text { for } x \text { and } 4 \text { for } y . \\
3 & =3 \checkmark & & \text { Simplify. }
\end{array}
$$

So, $(-2,4)$ is a solution of $\frac{1}{2} x+y=3$. The correct answer is A.

Exercises for Example 1

Tell whether the ordered pair is a solution of the equation.

1. $-2 x+3 y=-7 ;(2,-1)$
2. $x=-3 ;(0,-3)$
3. $\frac{2}{3} x-y=4 ;(9,2)$

Algebra 1

\qquad

Study Guide continued

EXAMPLE 2 Graph an equation

Graph the equation $3 \boldsymbol{y}=\boldsymbol{x}-3$.

Solution

STEP 1 Solve the equation for y. $3 y=x-3$ $y=\frac{1}{3} x-1$

STEP 2 Make a table by choosing a few values for x and finding the values of y.

\boldsymbol{x}	-3	0	3	6
\boldsymbol{y}	-2	-1	0	1

STEP 3 Plot the points. Notice that the points appear to lie on a line.

STEP 4 Connect the points by drawing a line through them. Use arrows to indicate that the graph goes on without end.

EXAMPLE 3 Graph a linear function

Graph the function $y=-x+3$ with domain $-1 \leq x \leq 4$. Then identify the range of the function.

Solution

STEP 1 Make a table.

x	-1	0	1	2	3	4
\boldsymbol{y}	4	3	2	1	0	-1

STEP 2 Plot the points.
STEP 3 Connect the points with a line segment because the domain is restricted.

STEP 4 Identify the range. From the graph, you can see that all points have a y-coordinate between -1 and 4 , so the range of the function is $-1 \leq y \leq 4$.

Exercises for Examples 2 and 3

4. Graph the equation $4 x-2 y=2$.
5. Graph the function $y=\frac{1}{2} x-5$ with domain $x \geq 4$. Then identify the range of the function.

Lesson 3.2 Graph Linear Equations, continued

21. a.

domain: $s \geq 0$ range: $m \geq 16$
b. domain: $0 \leq s \leq 80$; range: $16 \leq m \leq 256$; The original graph was a ray. By restricting the domain, the graph becomes a line segment.
c. domain: $0 \leq s \leq 165 \frac{1}{3}$; range: $16 \leq m \leq 512$

Study Guide

1. yes 2. no
2. yes
3.

5.

range: $y \geq-3$

Problem Solving Workshop: Worked-Out Example

1.

 domain: $0 \leq t \leq 1.25$, range: $0 \leq d \leq 10$; 1.25 hours
2.

domain: $0 \leq \ell \leq 3$, range: $0 \leq R \leq 45 ; \$ 45$

Challenge Practice

1. $\$ 16$
2. 2 dogs
3. 1 dog
4. at least 3 cars
5. 6 cars
6. 2 cars
7. at least 3 lawns
8. at

Lesson 3.3 Graph Using Intercepts

Teaching Guide

1. Answers will vary. 2. Students whose coordinates are $(1,0)$ and $(0,1)$ should stand.
2. They form the graph of equation $x+y=1$.
3. Students whose coordinates are $(0,-2)$ and $(2,0)$ should stand. They form the graph of equation $x-y=2$. 5. Sample answer: Find and plot the points where the graph of the equation crosses the axes. Connect the points to draw the line.

Practice A

1. $x: 5 ; y: 5$
2. $x: 2 ; y:-3$
3. $x: 5 ; y: 2$
4. $x:-3, y: 1$
5. $x:-4, y:-3$
6. $x: 1, y: 5$
7. $x: 9$
8. $x: 4$
9. $x:-1$
10. x : 5 11. $x:-18$
11. $x: 7$ 13. $x: 6$
12. $x:-5$
13. $x: \frac{10}{9}$
14. $y:-7$
15. $y:-11$
16. $y: 2$
17. $y: 6$
18. $y:-7$
19. $y: 8$ 22. $y: 4$ 23. $y: 3$ 24. $y:-3$
20.

27.

26.

