# **Study Guide**

For use with the lesson "Graph Linear Equations"

### Vocabulary

A solution of an equation in two variables in x and y is an ordered pair (x, y) that produces a true statement when the values of x and y are substituted into the equation.

The **graph of an equation in two variables** is the set of points in a coordinate plane that represents all solutions of the equation.

A linear equation is an equation whose graph is a line.

The standard form of a linear equation is Ax + By = C where A, B, and C are real numbers and A and B are not both zero.

The equation Ax + By = C represents a **linear function** provided  $B \neq 0$  (that is, provided the graph of the equation is not a vertical line).

### **EXAMPLE 1** Standardized Test Practice

|                | -2 4)  | $(\mathbf{R})$ (2.3)     | $(\mathbf{\hat{C}})$ $(0, 4)$ | ( <b>D</b> ) $(4 - 1)$ |
|----------------|--------|--------------------------|-------------------------------|------------------------|
| $\mathbf{A}$ ( | -2, 4) | <b>(</b> $2, 3$ <b>)</b> | (0, 4)                        | (4, -1)                |

#### Solution

Check whether each ordered pair is a solution of the equation.

Which ordered pair is a solution of  $\frac{1}{2}x + y = 3$ ?

| Test $(-2, 4)$ : $\frac{1}{2}x + y = 3$ | Write original equation.                          |
|-----------------------------------------|---------------------------------------------------|
| $\frac{1}{2}(-2) + 4 \stackrel{?}{=} 3$ | Substitute $-2$ for <i>x</i> and 4 for <i>y</i> . |
| $3 = 3 \checkmark$                      | Simplify.                                         |

So, (-2, 4) is a solution of  $\frac{1}{2}x + y = 3$ . The correct answer is A.

## **Exercises for Example 1**

#### Tell whether the ordered pair is a solution of the equation.

- **1.** -2x + 3y = -7; (2, -1)
- **2.** x = -3; (0, -3)

**3.** 
$$\frac{2}{3}x - y = 4$$
; (9, 2)

Date



Date \_



## **EXAMPLE2** Graph an equation

#### Graph the equation 3y = x - 3.

#### Solution

- **STEP 1** Solve the equation for *y*. 3y = x - 3
  - $y = \frac{1}{3}x 1$
- **STEP 3 Plot** the points. Notice that the points appear to lie on a line.
- **STEP 4 Connect** the points by drawing a line through them. Use arrows to indicate that the graph goes on without end.

**STEP 2** Make a table by choosing a few values for *x* and finding the values of *y*.

| x | -3 | 0  | 3 | 6 |
|---|----|----|---|---|
| y | -2 | -1 | 0 | 1 |



## **EXAMPLE3** Graph a linear function

Graph the function y = -x + 3 with domain  $-1 \le x \le 4$ . Then identify the range of the function.

#### Solution

**STEP 1** Make a table.

**STEP 2 Plot** the points.

- **STEP 3 Connect** the points with a line segment because the domain is restricted.
- **STEP 4 Identify** the range. From the graph, you can see that all points have a y-coordinate between -1 and 4, so the range of the function is  $-1 \le y \le 4$ .

| x | -1 | 0 | 1 | 2 | 3 | 4  |
|---|----|---|---|---|---|----|
| Y | 4  | 3 | 2 | 1 | 0 | -1 |



## **Exercises for Examples 2 and 3**

- **4.** Graph the equation 4x 2y = 2.
- **5.** Graph the function  $y = \frac{1}{2}x 5$  with domain  $x \ge 4$ . Then identify the range of the function.

## Lesson 3.2 Graph Linear Equations, continued





domain:  $s \ge 0$ range:  $m \ge 16$ 

**b.** domain:  $0 \le s \le 80$ ; range:  $16 \le m \le 256$ ; The original graph was a ray. By restricting the domain, the graph becomes a line segment.

**c.** domain:  $0 \le s \le 165 \frac{1}{3}$ ; range:  $16 \le m \le 512$ 

#### **Study Guide**







#### **Problem Solving Workshop: Worked-Out Example**



#### **Challenge Practice**

**1.** \$16 **2.** 2 dogs **3.** 1 dog **4.** at least 3 cars **5.** 6 cars **6.** 2 cars **7.** at least 3 lawns **8.** at least 4 lawns 9. less than 2 lawns

## Lesson 3.3 Graph Using Intercepts

#### **Teaching Guide**

1. Answers will vary. 2. Students whose coordinates are (1, 0) and (0, 1) should stand.

**3.** They form the graph of equation x + y = 1.

**4.** Students whose coordinates are (0, -2) and (2, 0) should stand. They form the graph of equation x - y = 2. **5.** *Sample answer*: Find and plot the points where the graph of the equation crosses the axes. Connect the points to draw the line.

#### **Practice A**

**1.** x: 5; y: 5 **2.** x: 2; y: -3 **3.** x: 5; y: 2 **4.** *x*: -3, *y*: 1 **5.** *x*: -4, *y*: -3 **6.** *x*: 1, *y*: 5 **7.** *x*: 9 **8.** *x*: 4 **9.** *x*: -1 **10.** *x*: 5 **11.** *x*: -18 **12.** *x*: 7 **13.** *x*: 6 **14.** *x*: -5 **15.** *x*:  $\frac{10}{9}$  **16.** *y*: -7 **17.** *y*: -11 **18.** *y*: 2 **19.** *y*: 6 **20.** *y*: -7 **21.** *y*: 8 **22.** *y*: 4 **23.** *y*: 3 **24.** *y*: -3







**28.** C **29.** B **30.** A

31. 0.6









