CHAPTER 3
 Intercepts of Horizontal and Vertical Lines

A slanting line in a graph will have both a y - and an x-intercept. What about vertical and horizontal lines?
A horizontal line has a y-intercept but no x-intercept-unless, that is, the line lies on top of the x-axis, in which case it has infinitely many x-intercepts! By the same token, a vertical line has exactly one x-intercept, and has no y-intercept unless it lies on the y-axis.

EXAMPLE 1 Find the intercepts of the graph of an equation

a. $y=5$
b. $x=3$
c. $y=-2$
d. $x=-\frac{3}{2}$
e. $y=0$

Solution:

The graphs of the five lines are as shown.

a. $y=5$ has a y-intercept of 5 and no x-intercept.
b. $x=3$ has an x-intercept of 3 and no y-intercept.
c. $y=-2$ has a y-intercept of -2 and no x-intercept.
d. $x=-\frac{3}{2}$ has an x-intercept of $-\frac{3}{2}$ and no y-intercept.
e. $y=0$ has a y-intercept of 0 and infinitely many x-intercepts.

Practice

Find the x-intercept(s) and the y-intercept(s) of the graph of the equation.

1. $y=5$
2. $x=-4$
3. $y=-\frac{3}{4}$
4. $x=0$
5. $y=9$
6. $y=0$

Write the equation of the line that has the given intercepts.
7. x-intercept: -2
y-intercept: none
8. x-intercept: none
y-intercept: 7
9. x-intercept: 0
y-intercepts: all real numbers

