Date

CHAPTER Intercepts of Horizontal and Vertical Lines

A slanting line in a graph will have both a *y*- and an *x*-intercept. What about vertical and horizontal lines?

A horizontal line has a *y*-intercept but no *x*-intercept–unless, that is, the line lies on top of the *x*-axis, in which case it has infinitely many *x*-intercepts! By the same token, a vertical line has exactly one *x*-intercept, and has no *y*-intercept unless it lies on the *y*-axis.

EXAMPLE 1

Find the intercepts of the graph of an equation

a. y = 5 **b.** x = 3 **c.** y = -2 **d.** $x = -\frac{3}{2}$ **e.** y = 0

Solution:

The graphs of the five lines are as shown.

a. y = 5 has a y-intercept of 5 and no x-intercept.

b. x = 3 has an x-intercept of 3 and no y-intercept.

- **c.** y = -2 has a *y*-intercept of -2 and no *x*-intercept.
- **d.** $x = -\frac{3}{2}$ has an *x*-intercept of $-\frac{3}{2}$ and no *y*-intercept.

e. y = 0 has a y-intercept of 0 and infinitely many x-intercepts.

Practice

Find the *x*-intercept(s) and the *y*-intercept(s) of the graph of the equation.

1. $y = 5$	2. $x = -4$	3. $y = -\frac{3}{4}$
4. $x = 0$	5. $y = 9$	6. $y = 0$

Write the equation of the line that has the given intercepts.

7. x-intercept: -2	8	<i>x</i> -intercept: none	9.	x-intercept: 0
y-intercept: none		y-intercept: 7		y-intercepts: all
				real numbers

Copyright © Holt McDougal. All rights reserved.

Pre-AP Copymasters