Name .

LESSON

Date _

Study Guide

For use with the lesson "Graph Using Intercepts"

GOAL Graph a linear equation using intercepts.

Vocabulary

The *x*-coordinate of a point where a graph crosses the *x*-axis is an *x*-intercept.

The *y*-coordinate of a point where a graph crosses the *y*-axis is a *y*-intercept.

EXAMPLE 1 Find the intercepts of the graph of an equation

Find the *x*-intercept and the *y*-intercept of the graph of 7x - 3y = 21. Solution

To find the *x*-intercept, substitute 0 for *y* and solve for *x*.

7x - 3y = 21	Write original equation.
7x - 3(0) = 21	Substitute 0 for <i>y</i> .
$x = \frac{21}{7} = 3$	Solve for <i>x</i> .

To find the *y*-intercept, substitute 0 for *x* and solve for *y*.

7x - 3y = 21	Write original equation.
7(0) - 3y = 21	Substitute 0 for <i>x</i> .
$y = \frac{21}{-3} = -7$	Solve for <i>y</i> .

The *x*-intercept is 3. The *y*-intercept is -7.

EXAMPLE2 Use a graph to find the intercepts

Identify the x-intercept and y-intercept of the graph.

Solution

To find the *x*-intercept, look to see where the graph crosses the *x*-axis. The *x*-intercept is -2. To find the *y*-intercept, look to see where the graph crosses the *y*-axis. The *y*-intercept is 1.

LESSON

____ For use with the lesson "Graph Using Intercepts"

EXAMPLE3 Use intercepts to graph an equation

Graph 3x + 2y = 6. Label the points where the line crosses the axis. Solution

STEP 1 Find the intercepts.

$$3x + 2y = 6$$

$$3x + 2(0) = 6$$

$$x = 2 \quad \longleftarrow x \text{-intercept}$$

$$3x + 2y = 6$$

$$3(0) + 2y = 6$$

$$y = 3 \quad \longleftarrow y \text{-intercept}$$

- **STEP 2 Plot** the points that correspond to the intercepts. The *x*-intercept is 2, so plot and label the point (2, 0). The *y*-intercept is 3, so plot and label the point (0, 3).
- **STEP 3 Connect** the points by drawing a line through them.

CHECK You can check the graph of the equation by using a third point. When x = 4, y = -3, so the ordered pair (4, -3) is a third solution of the equation. You can see that (4, -3) lies on the graph, so the graph is correct.

Exercises for Examples 1, 2, and 3

Find the *x*-intercept and the *y*-intercept of the graph of the equation.

- **1.** -4x + 3y = 24 **2.** 5x y = 15
- **4.** Graph $x \frac{1}{2}y = 1$. Label the point where the line crosses the axis.
- **5.** Identify the *x*-intercept and *y*-intercept of the graph.

