\qquad

Distinguishing Between Direct Variation and Other Linear Models

All direct variation is linear, but not all linear models represent direct variation. Direct variation is the special case of a linear model $y=m x+b$ where the y-intercept (the constant term b) equals 0 .

EXAMPLE 1 Identify linear and direct variation relations

For each of the following, state whether the relation is linear, and if so, whether it represents direct variation.
a. $y=3 x-6$
b. $y=9 x$
c. $y=\frac{5}{x}$
d. $x-2 y=0$
e. $y+x=4$

Solution:

a. $y=3 x-6$ is a linear equation in slope-intercept form, so it is a linear model. However, the y-intercept is not 0 , so this is not an instance of direct variation.
b. $y=9 x$ is a linear slope-intercept equation with $m=9$ and $b=0$. This is a linear relation that represents direct variation.
c. $y=\frac{5}{x}$ is not a linear equation. It cannot be written in either form $a x+b x=c$ or $y=m x+b$.
d. $x-2 y=0$ can be rewritten as $y=\frac{1}{2} x$. This is a linear slope-intercept equation with $m=\frac{1}{2}$ and $b=0$. So this is a linear relation that represents direct variation.
e. $y+x=4$ can be rewritten as $y=-x+4$. This is a linear equation in slopeintercept form, but b equals 4 , not 0 . So this is not an instance of direct variation.

Graphically, a relation of direct variation appears as a straight line that passes through the origin.

EXAMPLE 2 Identify direct variation graphically

Use the graphs of the equations in parts d and e of Example 1 to show that one represents direct variation and the other does not.
Solution:

The graph of $x-2 y$, or $y=\frac{1}{2} x$, passes through the origin, so this is an instance of direct variation. By contrast, the graph of $y+x=4$, or $y=-x+4$, does not pass through the origin, so this is not direct variation.

Algebra 1

Pre-AP
\qquad

${ }_{3}^{\text {сиарте }}$ Distinguishing Between Direct Variation and Other Linear Models continued

Practice

For each of the following, state whether the relation is linear, and if so, whether it represents direct variation.

1. $y-3 x=7$
2. $y=3 x-6$
3. $5 x+y=0$
4. $y=4 x^{2}$
5. $x y=8$
6. $\frac{y}{x}=10$

For each of the following, write an appropriate equation and state whether the linear relation represents direct variation.
7. A trip to the gas station costs $\$ 2.78$ times the number of gallons pumped.
8. An automobile repair costs $\$ 178$ for the part plus $\$ 65$ per hour for labor.
9. The total number of pixels on a computer screen is determined by the area and the fact that the resolution is 9216 pixels per square inch.
10. Challenge An electric motor needs 1 ampere of current for every 120 watts of power produced, plus 0.5 amperes of current to run the control circuitry and instrument panel.

