Date

CHAPTER 3 Distinguishing Between Direct Variation and Other Linear Models

All direct variation is linear, but not all linear models represent direct variation. Direct variation is the special case of a linear model y = mx + b where the y-intercept (the constant term b) equals 0.

EXAMPLE1 Identify linear and direct variation relations

For each of the following, state whether the relation is linear, and if so, whether it represents direct variation.

a. y = 3x - 6 **b.** y = 9x **c.** $y = \frac{5}{x}$ **d.** x - 2y = 0**e.** y + x = 4

Solution:

- **a.** y = 3x 6 is a linear equation in slope-intercept form, so it is a linear model. However, the *y*-intercept is not 0, so this is not an instance of direct variation.
- **b.** y = 9x is a linear slope-intercept equation with m = 9 and b = 0. This is a linear relation that represents direct variation.
- **c.** $y = \frac{5}{x}$ is not a linear equation. It cannot be written in either form ax + bx = c or y = mx + b.
- **d.** x 2y = 0 can be rewritten as $y = \frac{1}{2}x$. This is a linear slope-intercept equation with $m = \frac{1}{2}$ and b = 0. So this is a linear relation that represents direct variation.
- **e.** y + x = 4 can be rewritten as y = -x + 4. This is a linear equation in slope-intercept form, but *b* equals 4, not 0. So this is not an instance of direct variation.

Graphically, a relation of direct variation appears as a straight line that passes through the origin.

EXAMPLE2 Identify direct variation graphically

Use the graphs of the equations in parts d and e of Example 1 to show that one represents direct variation and the other does not.

Solution:

The graph of x - 2y, or $y = \frac{1}{2}x$, passes through the origin, so this is an instance of direct variation. By contrast, the graph of y + x = 4, or y = -x + 4, does not pass through the origin, so this is not direct variation.

<u>Pre-AP Copymasters</u>

Name _

3

Distinguishing Between Direct Variation CHAPTER and Other Linear Models continued

Practice

For each of the following, state whether the relation is linear, and if so, whether it represents direct variation.

1.	y - 3x = 7	2.	y = 3x - 6	3.	5x + y = 0
4.	$y = 4x^2$	5.	xy = 8	6.	$\frac{y}{x} = 10$

For each of the following, write an appropriate equation and state whether the linear relation represents direct variation.

- 7. A trip to the gas station costs \$2.78 times the number of gallons pumped.
- 8. An automobile repair costs \$178 for the part plus \$65 per hour for labor.
- 9. The total number of pixels on a computer screen is determined by the area and the fact that the resolution is 9216 pixels per square inch.
- 10. Challenge An electric motor needs 1 ampere of current for every 120 watts of power produced, plus 0.5 amperes of current to run the control circuitry and instrument panel.

Pre-AP Copymasters