\qquad

LESSON Study Guide

GOAL Write and graph direct variation equations.

Vocabulary

Two variables x and y show direct variation, provided $y=a x$ and $a \neq 0$.

The nonzero number a is called the constant of variation, and y is said to vary directly with x.

EXAMPLE 1 Identify direct variation equations

Tell whether the equation represents direct variation. If so, identify the constant of variation.
a. $6 x-3 y=12$
b. $-5 x+2 y=0$

Solution

To tell whether the equation represents direct variation, try to rewrite the equation in the form $y=a x$.

$$
\text { a. } \begin{aligned}
6 x-3 y & =12 & & \text { Write original equation. } \\
-3 y & =-6 x+12 & & \text { Subtract } 6 x \text { from each side. } \\
y & =2 x-4 & & \text { Divide each side by }-3 .
\end{aligned}
$$

Because the equation $6 x-3 y=12$ cannot be rewritten in the form $y=a x$, it does not represent direct variation.

$$
\text { b. } \begin{aligned}
-5 x+2 y & =0 & & \text { Write original equation. } \\
2 y & =5 x & & \text { Add } 5 x \text { to each side. } \\
y & =\frac{5}{2} x & & \text { Simplify. }
\end{aligned}
$$

Because the equation $-5 x+2 y=0$ can be rewritten in the form $y=a x$, it represents direct variation. The constant of variation is $\frac{5}{2}$.

Exercises for Example 1

Tell whether the equation represents direct variation. If so, identify the constant of variation.

1. $3 x+5 y=0$
2. $x+2 y=1$
3. $7 x-9 y=0$
\qquad

EXAMPLE 2 Write and use a direct variation equation

The graph of a direct variation equation is shown.

a. Write the direct variation equation.
b. Find the value of y when $x=12$.

Solution

a. Because y varies directly with x, the equation has the form $y=a x$. Use the fact that $y=-3$ when $x=-1$ to find a.

$$
\begin{aligned}
y & =a x & & \text { Write direct variation equation. } \\
-3 & =a(-1) & & \text { Substitute. } \\
3 & =a & & \text { Solve for } a .
\end{aligned}
$$

A direct variation equation that relates x and y is $y=3 x$.
b. When $x=12, y=3(12)=36$. The value of y when $x=12$ is 36 .

EXAMPLE 3 Use a direct variation model

The table shows the cost \boldsymbol{C} of purchasing tickets for a rock concert.
a. Explain why C varies directly with t.
b. Write a direct variation equation that relates t and C.

Number of tickets, \boldsymbol{t}	Cost, \boldsymbol{C}
2	$\$ 36$
3	$\$ 54$
5	$\$ 90$

Solution

a. To explain why C varies directly with t, compare the ratios $\frac{C}{t}$ for all data pairs $(t, C): \frac{36}{2}=\frac{54}{3}=\frac{90}{5}=18$. Because the ratios all equal $18, C$ varies directly with t.
b. A direct variation equation is $C=18 t$.

Exercises for Examples 2 and 3

4. The graph of a direct variation equation passes through the point $(5,-2)$. Write a direct variation equation and find the value of y when $x=20$.
5. What if? In Example 3, suppose the ticket distributor charges $\$ 5.50$ for each transaction, no matter how many tickets are purchased, and $\$ 18$ per ticket. Is it reasonable to use a direct variation model for this situation? Explain.
