LESSON

Date _

Study Guide

For use with the lesson "Model Direct Variation"

GOAL Write and graph direct variation equations.

Vocabulary

Two variables x and y show **direct variation**, provided y = ax and $a \neq 0$.

The nonzero number *a* is called the **constant of variation**, and *y* is said to *vary directly* with *x*.

EXAMPLE 1 Identify direct variation equations

Tell whether the equation represents direct variation. If so, identify the constant of variation.

a. 6x - 3y = 12 **b.** -5x + 2y = 0

Solution

a.

To tell whether the equation represents direct variation, try to rewrite the equation in the form y = ax.

6x - 3y = 12	Write original equation.
-3y = -6x + 12	Subtract 6 <i>x</i> from each side.
y = 2x - 4	Divide each side by -3 .

Because the equation 6x - 3y = 12 cannot be rewritten in the form y = ax, it does not represent direct variation.

b. $-5x + 2y = 0$		Write original equation	
	2y = 5x	Add $5x$ to each side.	
	$y = \frac{5}{2}x$	Simplify.	

Because the equation -5x + 2y = 0 can be rewritten in the form y = ax, it represents direct variation. The constant of variation is $\frac{5}{2}$.

Exercises for Example 1

Tell whether the equation represents direct variation. If so, identify the constant of variation.

1.
$$3x + 5y = 0$$
 2. $x + 2y = 1$ **3.** $7x - 9y = 0$

LESSON 3.6

LESSON

Study Guide continued

☐ For use with the lesson "Model Direct Variation"

EXAMPLE2 Write and use a direct variation equation

The graph of a direct variation equation is shown.

- **a.** Write the direct variation equation.
- **b.** Find the value of y when x = 12.

Solution

a. Because y varies directly with x, the equation has the form y = ax. Use the fact that y = -3 when x = -1 to find a.

3 = a Solve for a.

A direct variation equation that relates x and y is y = 3x.

b. When x = 12, y = 3(12) = 36. The value of y when x = 12 is 36.

EXAMPLE3 Use a direct variation model

The table shows the cost *C* of purchasing tickets for a rock concert.

- **a.** Explain why *C* varies directly with *t*.
- **b.** Write a direct variation equation that relates *t* and *C*.

Number of tickets, t	Cost, C
2	\$36
3	\$54
5	\$90

Solution

- **a.** To explain why *C* varies directly with *t*, compare the ratios $\frac{C}{t}$ for all data pairs (*t*, *C*): $\frac{36}{2} = \frac{54}{3} = \frac{90}{5} = 18$. Because the ratios all equal 18, *C* varies directly with *t*.
- **b.** A direct variation equation is C = 18t.

Exercises for Examples 2 and 3

- **4.** The graph of a direct variation equation passes through the point (5, -2). Write a direct variation equation and find the value of y when x = 20.
- **5.** What if? In Example 3, suppose the ticket distributor charges \$5.50 for each transaction, no matter how many tickets are purchased, and \$18 per ticket. Is it reasonable to use a direct variation model for this situation? *Explain*.

Date