LESSON

Date ___

Study Guide

For use with the lesson "Graph Linear Functions"

GOAL Use function notation.

Vocabulary

You have seen linear functions written in the form y = mx + b. By naming a function f, you can write it using **function notation**: f(x) = mx + b.

A **family of functions** is a group of functions with similar characteristics.

The most basic linear function in the family of all linear functions is called the **parent linear function** and has the following form: f(x) = x.

EXAMPLE 1 Standardized Test Practice

What is the value of the function f(x) = -2x - 7 when x = -2?

▲ −11	B -3	C 3	D 11
Solution			
f(x) = -2x - 7	Write o	riginal function.	

J(x) = 2x + y	White original failetion.
f(-2) = -2(-2) - 7	Substitute -2 for <i>x</i> .
= -3	Simplify.

The correct answer is B.

Exercises for Example 1

Evaluate the function for the given value of x.

1.
$$f(x) = 0.3x - 1.2; 7$$
 2. $g(x) = -\frac{2}{5}x + \frac{1}{10}; 4$

EXAMPLE 2 Find an x-value

For the function f(x) = -3x + 2, find the value of x so that f(x) = -13.

Solution

f(x) = -3x + 2	Write original function.
-13 = -3x + 2	Substitute -13 for $f(x)$.
5 = x	Solve for <i>x</i> .

When x = 5, f(x) = -13.

LESSON

Date _

Study Guide continued

____ For use with the lesson "Graph Linear Functions"

Exercises for Example 2

Find the value of x so that the function has the given value.

3.
$$g(x) = -\frac{1}{2}x - 3; 4$$
 4. $h(x) = 5x - 3; -13$

EXAMPLE3 Compare graphs with the graph of f(x) = x

Graph the function. Compare the graph with the graph of f(x).

a.
$$m(x) = \frac{1}{3}x$$

b.
$$n(x) = x - 2$$

Solution

- **a.** Because the slope of the graph of *m* is less than the slope of the graph of *f*, the graph of *m* rises slower from left to right. The *y*-intercept for both graphs is 0, so both lines pass through the origin.
- **b.** Because the graphs of *n* and *f* have the same slope, m = 1, the lines are parallel. Also, the *y*-intercept of the graph of *n* is 2 less than the *y*-intercept of the graph of *f*.

Exercise for Example 3

5. Graph g(x) = 4x. Compare the graph with the graph of f(x) = x.

ESSON 3.7