3.7	Graph Linear Functions	R P
Before	You graphed linear equations and functions.	
Now	You will use function notation.	N MARCH
Why?	So you can model an animal population, as in Example 3.	

Key Vocabulary

- function notation
- family of functions
- parent linear function

You have seen linear functions written in the form y = mx + b. By naming a function *f*, you can write it using **function notation**.

f(x) = mx + b Function notation

The symbol f(x) is another name for y and is read as "the value of f at x," or simply as "f of x." It does *not* mean f times x. You can use letters other than f, such as g or h, to name functions.

EXAMPLE 1 Standardized Test Practice

CC.9-12.F.IF.7a Graph linear		
and quadratic functions and		
show intercepts, maxima, and		
minima.*		

What is the value of the function f(x) = 3x - 15 when x = -3? (A) -24 (B) -6 (C) -2 (D) 8 Solution f(x) = 3x - 15 Write original function. f(-3) = 3(-3) - 15 Substitute -3 for x. = -24 Simplify. The correct answer is A. (A) (B) (C) (D)

GUIDED PRACTICE for Example 1

1. Evaluate the function h(x) = -7x when x = 7.

EXAMPLE 2 Find an x-value For the function f(x) = 2x - 10, find the value of x so that f(x) = 6. f(x) = 2x - 10 Write original function. 6 = 2x - 10 Substitute 6 for f(x). 8 = x Solve for x. • When x = 8, f(x) = 6. **DOMAIN AND RANGE** The domain of a function consists of the values of x for which the function is defined. The range consists of the values of f(x) where x is in the domain of f. The graph of a function f is the set of all points (x, f(x)).

EXAMPLE 3 Graph a function

GRAY WOLF The gray wolf population in central Idaho was monitored over several years for a project aimed at boosting the number of wolves. The number of wolves can be modeled by the function f(x) = 37x + 7 where *x* is the number of years since 1995. Graph the function and identify its domain and range.

Solution

To graph the function, make a table.

x	f (x)
0	37(0) + 7 = 7
1	37(1) + 7 = 44
2	37(2) + 7 = 81

The domain of the function is $x \ge 0$. From the graph or table, you can see that the range of the function is $f(x) \ge 7$.

Gray Wolf Population

GUIDED PRACTICE for Examples 2 and 3

2. WOLF POPULATION Use the model from Example 3 to find the value of x so that f(x) = 155. *Explain* what the solution means in this situation.

IDENTIFY PARAMETERS

INTERPRET MODELS

The rate of change in

the wolf population

actually varied over time. The model

rate of change.

simplifies the situation by assuming a steady

Particular members of the family of linear functions are determined by the values of *m* and *b*, called *parameters*, in the general form y = mx + b.

READING

The parent linear function is also called the *identity function*.

FAMILIES OF FUNCTIONS A **family of functions** is a group of functions with similar characteristics. For example, functions that have the form f(x) = mx + b constitute the family of *linear* functions.

KEY CONCEPT

Parent Function for Linear Functions

The most basic linear function in the family of all linear functions, called the **parent linear function**, is:

f(x) = x

The graph of the parent linear function is shown.

EXAMPLE 4 Compare graphs with the graph f(x) = x

Graph the function. Compare the graph with the graph of f(x) = x.

a. g(x) = x + 3

b.
$$h(x) = 2x$$

Solution

Because the graphs of g and f have the same slope, m = 1, the lines are parallel. Also, the *y*-intercept of the graph of *g* is 3 more than the *y*-intercept of the graph of *f*.

Because the slope of the graph of *h* is greater than the slope of the graph of *f*, the graph of *h* rises faster from left to right. The *y*-intercept for both graphs is 0, so both lines pass through the origin.

CONCEPT SUMMARY

Comparing Graphs of Linear Functions with the Graph of f(x) = x

Changing *m* or *b* in the general linear function g(x) = mx + b creates families of linear functions whose graphs are related to the graph of f(x) = x.

g(x) = x + b

- The graphs have the same slope, but different *y*-intercepts.
- Graphs of this family are vertical translations of the graph of f(x) = x.

- The graphs have different (positive) slopes, but the same *y*-intercept.
- Graphs of this family are vertical stretches or shrinks of the graph of f(x) = x.

q(x) = mx where m < 0

For Your Notebook

- The graphs have different (negative) slopes, but the same *y*-intercept.
- Graphs of this family are vertical stretches or shrinks with reflections in the *x*-axis of the graph of f(x) = x.

EXAMPLE 5 Graph real-world functions

CABLE A cable company charges new customers \$40 for installation and \$60 per month for its service. The cost to the customer is given by the function f(x) = 60x + 40 where *x* is the number of months of service. To attract new customers, the cable company reduces the installation fee to \$5. A function for the cost with the reduced installation fee is g(x) = 60x + 5. Graph both functions. How is the graph of *g* related to the graph of *f*?

Solution

The graphs of both functions are shown. Both functions have a slope of 60, so they are parallel. The *y*-intercept of the graph of *g* is 35 less than the graph of *f*. So, the graph of *g* is a vertical translation of the graph of *f*.

REVIEW TRANSFORMATIONS For help with transformations, see pp. SR12–SR13.

GUIDED PRACTICE for Example 5

4. WHAT IF? In Example 5, suppose the monthly fee is \$70 so that the cost to the customer is given by h(x) = 70x + 40. Graph *f* and *h* in the same coordinate plane. How is the graph of *h* related to the graph of *f*?

3.7 EXERCISES

HOMEWORK KEY See WORKED-OUT SOLUTIONS Exs. 3, 17, and 39
★ = STANDARDIZED TEST PRACTICE Exs. 2, 13, 22, 35, 36, 44, and 45

Skill Practice

- **1. VOCABULARY** When you write the function y = 3x + 12 as f(x) = 3x + 12, you are using <u>?</u>.
- **2. ★** WRITING Would the functions f(x) = -9x + 12, g(x) = -9x 2, and h(x) = -9x be considered a family of functions? *Explain*.

EXAMPLE 1	EVALUATING FUNCTIONS Evaluate the function when $x = -2$, 0, and 3.		
for Exs. 3–13	3. $f(x) = 12x + 1$	4. $g(x) = -3x + 5$	5. $p(x) = -8x - 2$
	6. $h(x) = 2.25x$	7. $m(x) = -6.5x$	8. $f(x) = -0.75x - 1$
	9. $s(x) = \frac{2}{5}x + 3$	10. $d(x) = -\frac{3}{2}x + 5$	11. $h(x) = \frac{3}{4}x - 6$
	12. ERROR ANALYSIS <i>L</i> the error in evaluat $g(x) = -5x + 3$ whe	Describe and correct ing the function n x = -3.	g(-3) = -5(-3) + 3 -3g = 18 g = -6

13. ★ MULTIPLE CH	IOICE Given $f(x) = -$	-6.8x + 5, what is the	e value of $f(-2)$?
A -18.6	B -8.6	(C) 8.6	D 18.6

EXAMPLE 2
for Exs. 14-22FINDING X-VALUES Find the value of x so that the function has the given
value.

14. $f(x) = 6x + 9; 3$	15	5. $g(x) = -x + 5; 2$
16. $h(x) = -7x + 12$;; -9	j(x) = 4x + 11; -13
18. $m(x) = 9x - 5;$	-2 19	9. $n(x) = -2x - 21; -6$
20. $p(x) = -12x - 3$	2 16; -3 2 1	1. $q(x) = 8x - 32; -4$
22. ★ MULTIPLE CH	IOICE What value of <i>x</i> make	f(x) = 5 if $f(x) = -2x + 25$?
▲ −15	B -10 C	D 10 D 15
TRANSFORMATION the graph with the	5 OF LINEAR FUNCTIONS Graph of $f(x) = x$.	aph the function. Compare
23. $g(x) = x + 5$	24. $h(x) = 6 + x$	25. $q(x) = x - 1$
26. $m(x) = x - 6$	27. $d(x) = x + 7$	28. $t(x) = x - 3$
29. $r(x) = 4x$	30. $w(x) = 5x$	31. $h(x) = -3x$
32. $k(x) = -6x$	33. $g(x) = \frac{1}{3}x$	34. $m(x) = -\frac{7}{2}x$
35. MULTIPLE CH which function (A) $f(x) = 3x +$ (B) $f(x) = 3x -$ (C) $f(x) = 8x +$ (D) $f(x) = 8x -$	IOICE The graph of is shown?	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
36. ★ OPEN - ENDE linear functions	D In this exercise you w s when their slopes and y-in	ill compare the graphs of tercepts are changed.
a. Choose a line Then graph t	ear function of the form $f(x)$ he function.	$= mx + b$ where $m \neq 0$.

- **b.** Using the same *m* and *b* values as in part (a), graph the function g(x) = 2mx + b. How are the slope and *y*-intercept of the graph of *g* related to the slope and *y*-intercept of the graph of *f*?
- **c.** Using the same *m* and *b* values as in part (a), graph the function h(x) = mx + (b 3). How are the slope and *y*-intercept of the graph of *h* related to the slope and *y*-intercept of the graph of *f*?
- **37. REASONING** How is the graph of g(x) = 1 related to the graph of h(x) = -1?
- **38.** CHALLENGE Suppose that f(x) = 4x + 7 and g(x) = 2x. What is a rule for g(f(x))? What is a rule for f(g(x))?

= See WORKED-OUT SOLUTIONS in Student Resources

EXAMPLE 4 for Exs. 23–34

PROBLEM SOLVING

- **45.** ★ EXTENDED RESPONSE The number of hours of daylight in Austin, Texas, during the month of March can be modeled by the function l(x) = 0.03x + 11.5 where *x* is the day of the month.
 - a. Graph Graph the function and identify its domain and range.
 - **b. Graph** The number of hours of darkness can be modeled by the function $d(x) = 24 \ell(x)$. Graph the function on the same coordinate plane as you used in part (a). Identify its domain and range.
 - **c. CHALLENGE** *Explain* how you could have obtained the graph of *d* from the graph of ℓ using translations and reflections.
 - **d. CHALLENGE** What does the point where the graphs intersect mean in terms of the number of hours of daylight and darkness?

Quiz

Given that y varies directly with x, use the specified values to write a direct variation equation that relates x and y.

1. x = 5, y = 10 **2.** x = 4, y = 6 **3.** x = 2, y = -16

Evaluate the function.

4.
$$g(x) = 6x - 5$$
 when $x = 4$

6.
$$j(x) = 0.2x + 12.2$$
 when $x = 244$

5. h(x) = 14x + 7 when x = 27. $k(x) = \frac{5}{6}x + \frac{1}{3}$ when x = 4

Graph the function. Compare the graph to the graph of f(x) = x.

8. g(x) = -4x

9.
$$h(x) = x - 2$$

10. HOURLY WAGE The table shows the number of hours that you worked for each of three weeks and the amount that you were paid. What is your hourly wage?

Hours	12	16	14
Pay (dollars)	84	112	98