3.7 Graph Linear Functions

Before
Now
Why?

You graphed linear equations and functions.
You will use function notation.
So you can model an animal population, as in Example 3.

Key Vocabulary

- function notation
- family of functions
- parent linear function

You have seen linear functions written in the form $y=m x+b$. By naming a function f, you can write it using function notation.

$$
f(x)=m x+b \quad \text { Function notation }
$$

The symbol $f(x)$ is another name for y and is read as "the value of f at x," or simply as " f of x." It does not mean f times x. You can use letters other than f, such as g or h, to name functions.
CC.9-12.F.IF.7a Graph linear and quadratic functions and show intercepts, maxima, and minima.*

EXAMPLE 1 Standardized Test Practice

What is the value of the function $f(x)=3 x-15$ when $x=-3$?
(A) -24
(B) -6
(C) -2
(D) 8

Solution

$$
\begin{aligned}
f(x) & =3 x-15 & & \text { Write original function. } \\
f(-3) & =3(-3)-15 & & \text { Substitute }-3 \text { for } x . \\
& =-24 & & \text { Simplify. }
\end{aligned}
$$

- The correct answer is A. (A) (B) (C)

1. Evaluate the function $h(x)=-7 x$ when $x=7$.

EXAMPLE 2 Find an x-value

For the function $f(x)=2 x-10$, find the value of x so that $f(x)=6$.

$$
\begin{aligned}
f(x) & =2 x-10 & & \text { Write original function. } \\
\mathbf{6} & =2 x-10 & & \text { Substitute } 6 \text { for } f(x) . \\
8 & =x & & \text { Solve for } x .
\end{aligned}
$$

- When $x=8, f(x)=6$.

DOMAIN AND RANGE The domain of a function consists of the values of x for which the function is defined. The range consists of the values of $f(x)$ where x is in the domain of f. The graph of a function f is the set of all points $(x, f(x))$.

EXAMPLE 3 Graph a function

INTERPRET MODELS The rate of change in the wolf population actually varied over time. The model simplifies the situation by assuming a steady rate of change.

GRAY WOLF The gray wolf population in central Idaho was monitored over several years for a project aimed at boosting the number of wolves. The number of wolves can be modeled by the function $f(x)=37 x+7$ where x is the number of years since 1995. Graph the function and identify its domain and range.

Solution

To graph the function, make a table.

x	$f(x)$
0	$37(0)+7=7$
1	$37(1)+7=44$
2	$37(2)+7=81$

The domain of the function is $x \geq 0$. From the graph or table, you can see that the range of the function is $f(x) \geq 7$.

Guided Practice for Examples 2 and 3

2. WOLF POPULATION Use the model from Example 3 to find the value of x so that $f(x)=155$. Explain what the solution means in this situation.

IDENTIFY
PARAMETERS
Particular members of the family of linear functions are determined by the values of m and b, called parameters, in the general form $y=m x+b$.

READING

The parent linear function is also called the identity function.

FAMILIES OF FUNCTIONS A family of functions is a group of functions with similar characteristics. For example, functions that have the form $f(x)=m x+b$ constitute the family of linear functions.

KEY CONCEPT

For Your Notebook

Parent Function for Linear Functions

The most basic linear function in the family of all linear functions, called the parent linear function, is:

$$
f(x)=x
$$

The graph of the parent linear function is shown.

EXAMPLE 4 Compare graphs with the graph $f(x)=x$

Graph the function. Compare the graph with the graph of $f(x)=x$.
a. $g(x)=x+3$
b. $h(x)=2 x$

Solution

a.

Because the graphs of g and f have the same slope, $m=1$, the lines are parallel. Also, the y-intercept of the graph of g is 3 more than the y-intercept of the graph of f.
b.

Because the slope of the graph of \boldsymbol{h} is greater than the slope of the graph of f, the graph of h rises faster from left to right. The y-intercept for both graphs is 0 , so both lines pass through the origin.

Guided Practice for Example 4

3. Graph $h(x)=-3 x$. Compare the graph with the graph of $f(x)=x$.

CONCEPT SUMMARY

For Your Notebook

Comparing Graphs of Linear Functions with the Graph of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}$

Changing m or b in the general linear function $g(x)=m x+b$ creates families of linear functions whose graphs are related to the graph of $f(x)=x$.
$g(x)=x+b$

- The graphs have the same slope, but different y-intercepts.
- Graphs of this family are vertical translations of the graph of $f(x)=x$.
$g(x)=m x$ where $m>0$

- The graphs have different (positive) slopes, but the same y-intercept.
- Graphs of this family are vertical stretches or shrinks of the graph of $f(x)=x$.
$\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{m x}$ where $\boldsymbol{m}<\mathbf{0}$

- The graphs have different (negative) slopes, but the same y-intercept.
- Graphs of this family are vertical stretches or shrinks with reflections in the x-axis of the graph of $f(x)=x$.

EXAMPLE 5 Graph real-world functions

CABLE A cable company charges new customers $\$ 40$ for installation and $\$ 60$ per month for its service. The cost to the customer is given by the function $f(x)=60 x+40$ where x is the number of months of service. To attract new customers, the cable company reduces the installation fee to $\$ 5$. A function for the cost with the reduced installation fee is $g(x)=60 x+5$. Graph both functions. How is the graph of g related to the graph of f ?

Solution

The graphs of both functions are shown. Both functions have a slope of 60 , so they are parallel. The y-intercept of the graph of g is 35 less than the graph of f. So, the graph of g is a vertical translation of the graph of f.

REVIEW

TRANSFORMATIONS
For help with transformations, see pp. SR12-SR13.

Guided Practice for Example 5

4. WHAT IF? In Example 5 , suppose the monthly fee is $\$ 70$ so that the cost to the customer is given by $h(x)=70 x+40$. Graph f and h in the same coordinate plane. How is the graph of h related to the graph of f ?
3.7 EXERCISES

HOMEWORK
KEY
= See WORKED-OUT SOLUTIONS Exs. 3, 17, and 39
$\star=$ STANDARDIZED TEST PRACTICE
Exs. 2, 13, 22, 35, 36, 44, and 45

SKILL Practice

EXAMPLE 1 for Exs. 3-13

1. VOCABULARY When you write the function $y=3 x+12$ as
$f(x)=3 x+12$, you are using \quad ? .
2. \star WRITING Would the functions $f(x)=-9 x+12, g(x)=-9 x-2$, and $h(x)=-9 x$ be considered a family of functions? Explain.

EVALUATING FUNCTIONS Evaluate the function when $x=-2,0$, and 3.
3. $f(x)=12 x+1$
4. $g(x)=-3 x+5$
5. $p(x)=-8 x-2$
6. $h(x)=2.25 x$
7. $m(x)=-6.5 x$
8. $f(x)=-0.75 x-1$
9. $s(x)=\frac{2}{5} x+3$
10. $d(x)=-\frac{3}{2} x+5$
11. $h(x)=\frac{3}{4} x-6$
12. ERROR ANALYSIS Describe and correct the error in evaluating the function $g(x)=-5 x+3$ when $x=-3$.

$$
\begin{align*}
g(-3) & =-5(-3)+3 \\
-3 g & =18 \\
g & =-6
\end{align*}
$$

EXAMPLE 2
for Exs. 14-22

EXAMPLE 4
for Exs. 23-34
13. \star MULTIPLE CHOICE Given $f(x)=-6.8 x+5$, what is the value of $f(-2)$?
(A) -18.6
(B) -8.6
(C) 8.6
(D) 18.6

FINDING X-VALUES Find the value of \boldsymbol{x} so that the function has the given value.
14. $f(x)=6 x+9 ; 3$
15. $g(x)=-x+5 ; 2$
16. $h(x)=-7 x+12 ;-9$
17. $j(x)=4 x+11 ;-13$
18. $m(x)=9 x-5 ;-2$
19. $n(x)=-2 x-21 ;-6$
20. $p(x)=-12 x-36 ;-3$
21. $q(x)=8 x-32 ;-4$
22. \star MULTIPLE CHOICE What value of x makes $f(x)=5$ if $f(x)=-2 x+25$?
(A) -15
(B) -10
(C) 10
(D) 15

TRANSFORMATIONS OF LINEAR FUNCTIONS Graph the function. Compare the graph with the graph of $f(x)=x$.
23. $g(x)=x+5$
24. $h(x)=6+x$
25. $q(x)=x-1$
26. $m(x)=x-6$
27. $d(x)=x+7$
28. $t(x)=x-3$
29. $r(x)=4 x$
30. $w(x)=5 x$
31. $h(x)=-3 x$
32. $k(x)=-6 x$
33. $g(x)=\frac{1}{3} x$
34. $m(x)=-\frac{7}{2} x$
35. \star MULTIPLE CHOICE The graph of which function is shown?
(A) $f(x)=3 x+8$
(B) $f(x)=3 x-8$
(C) $f(x)=8 x+3$
(D) $f(x)=8 x-3$

36. \star OPEN-ENDED In this exercise you will compare the graphs of linear functions when their slopes and y-intercepts are changed.
a. Choose a linear function of the form $f(x)=m x+b$ where $m \neq 0$. Then graph the function.
b. Using the same m and b values as in part (a), graph the function $g(x)=2 m x+b$. How are the slope and y-intercept of the graph of g related to the slope and y-intercept of the graph of f ?
c. Using the same m and b values as in part (a), graph the function $h(x)=m x+(b-3)$. How are the slope and y-intercept of the graph of h related to the slope and y-intercept of the graph of f ?
37. REASONING How is the graph of $g(x)=1$ related to the graph of $h(x)=-1$?
38. CHALLENGE Suppose that $f(x)=4 x+7$ and $g(x)=2 x$. What is a rule for $g(f(x))$? What is a rule for $f(g(x))$?

Problem Solving

EXAMPLE 3
for Exs. $39-41$

EXAMPLE 5
for Exs. 42-43
39. MOVIE TICKETS The average price of a movie ticket in the United States from 1980 to 2000 can be modeled by the function $f(x)=0.10 x+2.75$ where x is the number of years since 1980 .
a. Graph the function and identify its domain and range.
b. Find the value of x so that $f(x)=4.55$. Explain what the solution means in this situation.
40. DVD PLAYERS The number (in thousands) of DVD players sold in the United States from 1998 to 2003 can be modeled by $f(x)=4250 x+330$ where x is the number of years since 1998.
a. Graph the function and identify its domain and range.
b. Find the value of x so that $f(x)=13,080$. Explain what the solution means in this situation.
41. IN-LINE SKATING An in-line skater's average speed is 10 miles per hour. The distance traveled after skating for x hours is given by the function $d(x)=10 x$. Graph the function and identify its domain and range. How long did it take the skater to travel 15 miles? Explain.
AhimatedAlgebra at my.hrw.com

42. HOME SECURITY A home security company charges new customers $\$ 155$ for the installation of security equipment and a monthly fee of $\$ 40$. To attract more customers, the company reduces its installation fee to $\$ 75$. The functions below give the total cost for x months of service:

Regular fee: $f(x)=40 x+155 \quad$ Reduced fee: $g(x)=40 x+75$
Graph both functions. How is the graph of g related to the graph of f ?
43. THEATERS A ticket for a play at a theater costs $\$ 16$. The revenue (in dollars) generated from the sale of x tickets is given by $s(x)=16 x$. The theater managers raise the cost of tickets to $\$ 20$. The revenue generated from the sale of x tickets at that price is given by $r(x)=20 x$. Graph both functions. How is the graph of r related to the graph of s ?
44. \star EXTENDED RESPONSE The cost of supplies, such as mustard and napkins, a pretzel vendor needs for one day is $\$ 75$. Each pretzel costs the vendor $\$.50$ to make. The total daily cost to the vendor is given by $C(x)=0.5 x+75$ where x is the number of pretzels the vendor makes.
a. Graph Graph the cost function.
b. Graph The vendor sells each pretzel for $\$ 3$. The revenue is given by $R(x)=3 x$ where x is the number of pretzels sold. Graph the function.
c. Explain The vendor's profit is the difference of the revenue and the cost. Explain how you could use the graphs to find the vendor's profit for any given number of pretzels made and sold.
45. \star EXTENDED RESPONSE The number of hours of daylight in Austin, Texas, during the month of March can be modeled by the function $\ell(x)=0.03 x+11.5$ where x is the day of the month.
a. Graph Graph the function and identify its domain and range.
b. Graph The number of hours of darkness can be modeled by the function $d(x)=24-\ell(x)$. Graph the function on the same coordinate plane as you used in part (a). Identify its domain and range.
c. CHALLENGE Explain how you could have obtained the graph of d from the graph of ℓ using translations and reflections.
d. ChAllenge What does the point where the graphs intersect mean in terms of the number of hours of daylight and darkness?

QUIZ

Given that y varies directly with x, use the specified values to write a direct variation equation that relates x and y.

1. $x=5, y=10$
2. $x=4, y=6$
3. $x=2, y=-16$

Evaluate the function.

4. $g(x)=6 x-5$ when $x=4$
5. $h(x)=14 x+7$ when $x=2$
6. $j(x)=0.2 x+12.2$ when $x=244$
7. $k(x)=\frac{5}{6} x+\frac{1}{3}$ when $x=4$

Graph the function. Compare the graph to the graph of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}$.
8. $g(x)=-4 x$
10. HOURLY WAGE The table shows the number of hours that you worked for each of three weeks and the amount that you were paid. What is your hourly wage?
9. $h(x)=x-2$

Hours	12	16	14
Pay (dollars)	84	112	98

