\qquad

Representations of Lines

Lines can be determined given any of the following: a graph, an equation, a slope and one point, or two points. Given one form of a line, the other forms can be derived from it.
Two points, $(1,1)$ and $(3,5)$, are plotted on a graph to form the line shown.
From the points, the slope of the line can be found.
Slope $=m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{5-1}{3-1}=\frac{4}{2}=2$
The slope with one of the given points can be used to find the equation of this line in point-slope form.
Point-slope form: $y-1=2(x-1)$
The point-slope form can be rewritten into slope-intercept form or general form.
Slope-intercept form: $y-1=2 x-2 \rightarrow y=2 x-1$
General form: $y-1=2 x-2 \rightarrow 2 x-y=1$

Each of these forms represents the same line graphed through the two points $(1,1)$ and $(3,5)$.

EXAMPLE 1 Find the equation of a line from a graph

Find the point-slope form and slope-intercept form of the line shown in this graph.

Solution:

Two points located on this line are $(-3,2)$ and $(1,-2)$.
The slope of the line is $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-(-2)}{-3-1}=\frac{4}{-4}=-1$.
The y-intercept is at -1 .
One point-slope form of this line is $y-2=-1(x+3)$.
The slope-intercept form of this line is $y=-x-1$.

Example 1 shows how equations of a line can be found given a graph or two points. Example 2 shows how the slope and one point can be found given the general form of a line.

EXAMPLE2 Find the slope and a point on a line given its equation

Find the slope and a point on the line $3 x+y=-4$.

Solution:

To find the slope, rewrite the equation in slope-intercept form as $y=-3 x-4$.
The slope is -3 .
To find a point on the line, choose any x value and find the corresponding y value.
When $x=-2, y=-3(-2)-4=2$. A point on this line is $(-2,2)$.
\qquad
\qquad

Since lines have an infinite number of points, the number of possible x and corresponding y values that can be found is infinite. As a result, the number of equations that can be written for one line in point-slope form is also infinite.

EXAMPLE 3 Write multiple equations for one line in point-slope form

Find more than one equation in point-slope form for the line containing points $(2,1)$, $(3,3)$, and $(4,5)$.

Solution:

Slope $=m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3-1}{3-2}=\frac{2}{1}=2$.
One equation in point-slope form is $y-1=2(x-2)$.
Other equations are $y-3=2(x-3)$ and $y-5=2(x-4)$.
All equations represent the line $y=2 x-3$. Since there are infinitely many points on a line, each point can be used to write an infinite number of equations in pointslope form.

Practice

Write the point-slope form of the line containing the given slope and point.

1. $m=3$, point $(0,4)$
2. $m=\frac{1}{3}$, point $(3,2)$
3. $m=\frac{4}{3}$, point $(-1,-1)$
4. $m=-5$, point $(6,0)$
5. $m=-\frac{5}{2}$, point $(-4,2)$
6. $m=-1$, point $(4,-4)$

Write the slope-intercept form of the line containing the given two points.

7. $(1,4)$ and $(2,5)$
8. $(0,-3)$ and $(4,3)$
9. $(5,0)$ and $(0,3)$
10. $(-3,1)$ and $(2,-3)$
11. $(3,-4)$ and $(-1,2)$
12. $(-1,-2)$ and $(-3,-3)$

Write the slope-intercept form of the line graphed below.

13.

14.

15.

Problem Solving

16. Mark bought a $\$ 50$ tennis racket and paid $\$ 20$ an hour for tennis lessons. Find Mark's total cost for the tennis racket and 1,2,3, and 4 hours of tennis lessons. Use this information to write four equations in point-slope form to model Mark's total cost for tennis racket and lessons.
