4.2 Use Linear Equations in Slope-Intercept Form

Key Vocabulary

Before

Now

Why

- y-intercept
- slope
- slope-intercept form

CC.9-12.A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.*

For Your Notebook

Writing an Equation of a Line in Slope-Intercept Form

- *STEP 1* Identify the slope *m*. You can use the slope formula to calculate the slope if you know two points on the line.
- *STEP 2* Find the *y*-intercept. You can substitute the slope and the coordinates of a point (*x*, *y*) on the line in y = mx + b. Then solve for *b*.
- **STEP 3** Write an equation using y = mx + b.

So you can write a model for total cost, as in Example 5.

EXAMPLE 1 Write an equation given the slope and a point

Write an equation of the line that passes through the point (-1, 3) and has a slope of -4.

Solution

STEP 1 Identify the slope. The slope is -4.

STEP 2 Find the *y*-intercept. Substitute the slope and the coordinates of the given point in y = mx + b. Solve for *b*.

	y = mx + b	Write slope-intercept form.
•	3 = -4(-1) + b	Substitute -4 for <i>m</i> , -1 for <i>x</i> , and 3 for <i>y</i> .
	-1 = b	Solve for <i>b</i> .
STEP 3	Write an equation of t	he line.

y = mx + bWrite slope-intercept form. v = -4x - 1Substitute –4 for *m* and –1 for *b*.

GUIDED PRACTICE for Example 1

1. Write an equation of the line that passes through the point (6, 3) and has a slope of 2.

AVOID ERRORS When you substitute,

be careful not to mix up

the *x*- and *y*-values.

EXAMPLE 2 Write an equation given two points

Write an equation of the line that passes through (-2, 5) and (2, -1).

Solution

STEP 1 Calculate the slope.

2 = b

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 5}{2 - (-2)} = \frac{-6}{4} = -\frac{3}{2}$$

ANOTHER WAY

You can also find the y-intercept using the coordinates of the other given point, (2, -1): y = mx + b $-1 = -\frac{3}{2}(2) + b$ 2 = b

••• **STEP 2** Find the *y*-intercept. Use the slope and the point (-2, 5).

y = mx + b Write slope-intercept form.

$$5 = -\frac{3}{2}(-2) + b$$
 Substitute $-\frac{3}{2}$ for *m*, -2 for *x*, and 5 for *y*.

STEP 3 Write an equation of the line.

y = mx + bWrite slope-intercept form. $y = -\frac{3}{2}x + 2$ Substitute $-\frac{3}{2}$ for m and 2 for b.

EXAMPLE 3 Standardized Test Practice

Which function has the values f(4) = 9 and f(-4) = -7?

(A)
$$f(x) = 2x + 10$$
(B) $f(x) = 2x + 1$ (C) $f(x) = 2x - 13$ (D) $f(x) = 2x - 14$

ELIMINATE CHOICES You can also

evaluate each function when x = 4and x = -4. Eliminate any choices for which $f(4) \neq 9$ or $f(-4) \neq -7$. > STEP 1 Calculate the slope. Write f(4) = 9 as (4, 9) and f(-4) = -7as (-4, -7). $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-7 - 9}{-4 - 4} = \frac{-16}{-8} = 2$

STEP 2 Find the *y*-intercept. Use the slope and the point (4, 9).

y = mx + bWrite slope-intercept form.9 = 2(4) + bSubstitute 2 for m, 4 for x, and 9 for y.1 = bSolve for b.

STEP 3 Write an equation for the function. Use function notation.

f(x) = 2x + 1 Substitute 2 for *m* and 1 for *b*.

▶ The answer is B. ▲ **B C D**

GUIDED PRACTICE for Examples 2 and 3

- **2.** Write an equation of the line that passes through (1, -2) and (-5, 4).
- **3.** Write an equation for the linear function with the values f(-2) = 10 and f(4) = -2.

MODELING REAL-WORLD SITUATIONS You can model a real-world situation that involves a constant rate of change with an equation in slope-intercept form.

EXAMPLE 4 Solve a multi-step problem

GYM MEMBERSHIP Your gym membership costs \$33 per month after an initial membership fee. You paid a total of \$228 after 6 months. Write an equation that gives the total cost as a function of the length of your gym membership (in months). Find the total cost after 9 months.

Solution

step 1 Identify the rate of change and starting value.

Rate of change, *m*: monthly cost, \$33 per month Starting value, *b*: initial membership fee

STEP 2 Write a verbal model. Then write an equation.

EXAMPLE 5 Solve a multi-step problem

BMX RACING In Bicycle Moto Cross (BMX) racing, racers purchase a one year membership to a track. They also pay an entry fee for each race at that track. One racer paid a total of \$125 after 5 races. A second racer paid a total of \$170 after 8 races. How much does the track membership cost? What is the entry fee per race?

ANOTHER WAY For alternative methods

for solving the problem

the Problem Solving

in Example 5, see

Workshop.

Solution

step 1 **Identify** the rate of change and starting value.

Rate of change, *m*: entry fee per race Starting value, *b*: track membership cost

STEP 2 Write a verbal model. Then write an equation.

STEP 3 **Calculate** the rate of change. This is the entry fee per race. Use the slope formula. Racer 1 is represented by (5, 125). Racer 2 is represented by (8, 170).

$$n = \frac{y_2 - y_1}{x_2 - x_1} = \frac{170 - 125}{8 - 5} = \frac{45}{3} = 15$$

STEP 4 Find the track membership cost *b*. Use the data pair (5, 125) for racer 1 and the entry fee per race from Step 3.

C = mr + b	Write the equation from Step 2.
125 = 15(5) + b	Substitute 15 for <i>m</i> , 5 for <i>r</i> , and 125 for C.
50 = b	Solve for <i>b</i> .

The track membership cost is \$50. The entry fee per race is \$15.

GUIDED PRACTICE for Examples 4 and 5

- **4. GYM MEMBERSHIP** A gym charges \$35 per month after an initial membership fee. A member has paid a total of \$250 after 6 months. Write an equation that gives the total cost of a gym membership as a function of the length of membership (in months). Find the total cost of membership after 10 months.
- **5. BMX RACING** A BMX race track charges a membership fee and an entry fee per race. One racer paid a total of \$76 after 3 races. Another racer paid a total of \$124 after 7 races.
 - a. How much does the track membership cost?
 - **b.** What is the entry fee per race?
 - **c.** Write an equation that gives the total cost as a function of the number of races entered.

4.2 E	XERCISES	KEY ★ =	See WORKED-OUT SOL I Exs. 5, 11, and 49 STANDARDIZED TEST P Exs. 2, 29, 34–37, 41, and MULTIPLE REPRESENT/ Ex. 53	PRACTICE 49
Sk	KILL PRACTICE			
	 VOCABULARY What is the <i>y</i>-coordinate of a point where a graph crosses the <i>y</i>-axis called? ★ WRITING If the equation y = mx + b is used to model a quantity y as 			
	-	y x , why is b considered to	0	?
EXAMPLE 1 for Exs. 3–9	WRITING EQUATIONS Write a the given point and has the g		t passes through	
	3. (1, 1); <i>m</i> = 3	4. (5, 1); $m = 2$	5. $(-4, 7); m =$ 8. $(-3, -11); m =$	= -5
	6. $(5, -5); m = -2$	7. (8, -4); $m = -\frac{3}{4}$	8. (-3, -11);	$m = \frac{1}{2}$
	9. ERROR ANALYSIS <i>Description finding the y-intercept of the point (6, -3) and has</i>	the line that passes through	5 ¹¹ v	
EXAMPLE 4 for Ex. 10		set-up fee. One customer j s of service. <i>Describe</i> and c	correct 81	= mt + b = m(2) + 18 = m(2) = m
EXAMPLE 2 for Exs. 11–22	USING TWO POINTS Write ar the given points.	n equation of the line that	passes through	
	(11, 4), (2, 7)	12. (3, 2), (4, 9)	13. (10, -5), (-	-5, 1)
	14. (-2, 8), (-6, 0)	15. $\left(\frac{9}{2}, 1\right), \left(-\frac{7}{2}, 7\right)$	16. $(-5, \frac{3}{4}), (-$	2, $-\frac{3}{4}$
	USING A GRAPH Write an equation of the line shown.			
	17. $\begin{array}{c c} 1 & y \\ \hline 1 & (4, 1) \\ \hline 1 & (4, 1) \\ \hline 1 & (3, -3) \\ \hline \end{array}$	18. <i>y y y y y y y y y y</i>	19.	y (1, 0) 3 x
	20. (-1, 3)	21.	22. (-3, 2) (-3, 2)	y 1 1 1 1

for Exs. 23–33

WRITING LINEAR FUNCTIONS Write an equation for a linear function f that has the given values.

- **23.** f(-2) = 15, f(1) = 9**24.** f(-2) = -2, f(4) = -8**25.** f(2) = 7, f(4) = 6**26.** f(-4) = -8, f(-8) = -11**27.** f(3) = 1, f(6) = 4**28.** f(-5) = 9, f(11) = -39
- **29.** \star **MULTIPLE CHOICE** Which function has the values f(4) = -15 and f(7) = 57?

(A) f(x) = 14x - 71	B $f(x) = 24x - 1361$
(c) $f(x) = 24x + 360$	(D) $f(x) = 24x - 111$

USING A TABLE OR DIAGRAM Write an equation that represents the linear function shown in the table or mapping diagram.

30.	x	f (x)	31.	x	f (x)
	-4	6		-3	8
	4	4		3	4
	8	3		6	2
	12	2		9	0

★ SHORT RESPONSE Tell whether the given information is enough to write an equation of a line. *Justify* your answer.

34. Two points on the line

35. The slope and a point on the line

(-1, -2)

(3, 4)

х

36. The slope of the line

37. Both intercepts of the line

USING A GRAPH In Exercises 38–41, use the graph at the right.

- **38.** Write an equation of the line shown.
- **39.** Write an equation of a line that has the same *y*-intercept as the line shown but has a slope that is 3 times the slope of the line shown.
- **40.** Write an equation of a line that has the same slope as the line shown but has a *y*-intercept that is 6 more than the *y*-intercept of the line shown.
- **41.** ★ WRITING Which of the lines from Exercises 38–40 intersect? Which of the lines never intersect? *Justify* your answers.

REASONING Decide whether the three points lie on the same line. *Explain* how you know. If the points do lie on the same line, write an equation of the line that passes through all three points.

42. (-4, -2), (2, 2.5), (8, 7)	43. (2, 2), (-4, 5), (6, 1)
44. (-10, 4), (-3, 2.8), (-17, 6.8)	45. (-5.5, 3), (-7.5, 4), (-4, 5)
46 CHALLENCE A line passes through	the points $(-2, 3)$ $(2, 5)$ and $(6, k)$

46. CHALLENGE A line passes through the points (-2, 3), (2, 5), and (6, *k*). Find the value of *k*. *Explain* your steps.

PROBLEM SOLVING

EXAMPLES 4 and 5 for Exs. 47–50	4 and 5 was 9 feet. Eight years after it was planted, the hedge maple tree's			
	48. TECHNOLOGY You have a subs allows you to view 25 articles charged an additional fee for viewed. After viewing 28 arch After viewing 30 archived art	from the magazine's arch each article after the first ived articles, you paid a to	ives. You are 25 articles otal of \$34.80.	
	a. What is the cost per archive	ed article after the first 25 a	articles viewed?	
	b. What is cost of the magazin	ne subscription?		
	 ★ SHORT RESPONSE You are You must allow 30 minutes of plus some extra time. The las well-done after 1 hour and 25 cook a 3 pound roast? <i>Explain</i> 	cooking time for every po t time you cooked a 2 pou minutes. How much time	ound of beef, nd roast, it was e will it take to	
HINT In part (b), let <i>t</i> represent the number of years since 1981.	50. TELEPHONE SERVICE The annual household cost of telephone service in the United States increased at a relatively constant rate of \$27.80 per year from 1981 to 2001. In 2001 the annual household cost of telephone service was \$914.			
	a. What was the annual housb. Write an equation that give	es the annual household c	ost of telephone	
	service as a function of the number of years since 1981. c. Find the household cost of telephone service in 2000.			
	51. NEWSPAPERS Use the inform about the circulation of Sund		Sunday Edition C9	
	a. About how many Sunday n circulation in 1970?	ewspapers were in	SUNDAY PAPERS INCREASE From 1970 to 2000, the number of	
	b. Write an equation that give Sunday newspapers in circ of the number of years sine	ulation as a function	Sunday newspapers in circulation increased at a relatively constant rate of 11.8 newspapers per year. In 1997 there were 903 Sunday newspapers	
	c. About how many Sunday n circulation in 2000?	ewspapers were in	in circulation.	
	52. AIRPORTS From 1990 to 2001 United States increased at a r per year. There were 19,306 at	elatively constant rate of 1	75 airports	
	a. How many U.S. airports were there in 1990?			
	b. Write an equation that gives the number of U.S. airports as a function of the number of years since 1990.			
	c. Find the year in which the		eached 19,200.	
238	= See WORKED-OUT SOLUTIONS in Student Resources	★ = STANDARDIZED TEST PRACTICE	= MULTIPLE REPRESENTATIONS	

Edition C9

S INCREASE 0, the number of rs in circulation vely constant rate per year. In 1997 nday newspapers

53. MULTIPLE REPRESENTATIONS A hurricane is traveling at a constant speed on a straight path toward a coastal town, as shown below.

- **a. Writing an Equation** Write an equation that gives the distance (in miles) of the hurricane from the town as a function of the number of hours since 12:00 P.M.
- **b.** Drawing a Graph Graph the equation from part (a). *Explain* what the slope and the *y*-intercept of the graph mean in this situation.
- **c. Describing in Words** Predict the time at which the hurricane will reach the town. Your answer should include the following information:
 - an explanation of how you used your equation
 - a description of the steps you followed to obtain your prediction
- **54. CHALLENGE** An in-line skater practices at a race track. In two trials, the skater travels the same distance going from a standstill to his top racing speed. He then travels at his top racing speed for different distances.

Trial number	Time at top racing speed (seconds)	Total distance traveled (meters)
1	24	300
2	29	350

- **a. Model** Write an equation that gives the total distance traveled (in meters) as a function of the time (in seconds) at top racing speed.
- **b.** Justify What do the rate of change and initial value in your equation represent? *Explain* your answer using unit analysis.
- **c. Predict** One lap around the race track is 200 meters. The skater starts at a standstill and completes 3 laps. Predict the number of seconds the skater travels at his top racing speed. *Explain* your method.

Using ALTERNATIVE METHODS

Another Way to Solve Example 5

MULTIPLE REPRESENTATIONS In Example 5, you saw how to solve a problem about BMX racing using an equation. You can also solve this problem using a graph or a table.

PROBLEM

BMX RACING In Bicycle Moto Cross (BMX) racing, racers purchase a one year membership to a track. They also pay an entry fee for each race at that track. One racer paid a total of \$125 after 5 races. A second racer paid a total of \$170 after 8 races. How much does the track membership cost? What is the entry fee per race?

Метнод 1

Using a Graph One alternative approach is to use a graph.

- *STEP 1* **Read** the problem. It tells you the number of races and amount paid for each racer. Write this information as ordered pairs.
- Racer 1: (5, 125) Racer 2: (8, 170)

0

0

2

STEP 2 Graph the ordered pairs. Draw a line through the points. The y-intercept is 50. So, the track membership is \$50.

6

8

х

4

STEP 3 Find the slope of the line. This is the entry fee per race.

Fee = $\frac{45 \text{ dollars}}{3 \text{ races}}$ = \$15 per race

Using a Table Another approach is to use a table showing the amount paid for various numbers of races.

STEP 1 Calculate the race entry fee.

The number of races increased by 3, and the amount paid increased by \$45, so the race entry fee is $45 \div 3 = 15$.

STEP 2 Find the membership cost.

Number of races	Amount paid
0	\$50
1	\$65
2	\$80
3	\$95
4	\$110
5	\$125

The membership cost is the cost with no races. Use the race entry fee and work backwards to fill in the table. The membership cost is \$50.

PRACTICE

- 1. **CALENDARS** A company makes calendars from personal photos. You pay a delivery fee for each order plus a cost per calendar. The cost of 2 calendars plus delivery is \$43. The cost of 4 calendars plus delivery is \$81. What is the delivery fee? What is the cost per calendar? Solve this problem using two different methods.
- 2. **BOOKSHELVES** A furniture maker offers bookshelves that have the same width and depth but that differ in height and price, as shown in the table. Find the cost of a bookshelf that is 72 inches high. Solve this problem using two different methods.

Height (inches)	Price (dollars)
36	56.54
48	77.42
60	98.30

- **3. WHAT IF?** In Exercise 2, suppose the price of the 60 inch bookshelf was \$99.30. Can you still solve the problem? *Explain*.
- 4. **CONCERT TICKETS** All tickets for a concert are the same price. The ticket agency adds a fixed fee to every order. A person who orders 5 tickets pays \$93. A person who orders 3 tickets pays \$57. How much will 4 tickets cost? Solve this problem using two different methods.
- **5. ERROR ANALYSIS** A student solved the problem in Exercise 4 as shown below. *Describe* and correct the error.

Let p = price paid for 4 tickets $\frac{57}{3} = \frac{P}{4}$ 228 = 3p 76 = p