\qquad

LESSON
4.3

Problem Solving Workshop: Using Alternative Methods
 For use with the lesson "Write Linear Equations in Point-Slope Form"

Another Way to Solve Example 5
Multiple Representations In Example 5, you saw how to solve a problem about cost using rate of change. You can also solve the problem by working backwards.

PROBLEM Working Ranch The table shows the cost of visiting a working ranch for one day and night for different numbers of people. Can the situation be modeled by a linear equation? Explain. If possible, write an equation that gives the cost as a function of the number of people in the group.

Number of people	4	6	8	10	12
Cost (dollars)	250	350	450	550	650

METHOD Work Backwards You can solve the problem by working backwards.
STEP 1 Find the rate of change of the line connecting the points $(4,250)$ and $(12,650)$.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{650-250}{12-4}=\frac{400}{8}=50$
Using $(4,250)$ and $(12,650)$, the cost increases at a rate of $\$ 50$ per person.
STEP 2 Write an equation in point-slope form using the slope and the point $(4,250)$. Let C be the cost (in dollars) and p be the number of people.

$$
\begin{aligned}
C-C_{1} & =m\left(p-p_{1}\right) & & \text { Write point-slope form. } \\
C-250 & =50(p-4) & & \text { Substitute } 50 \text { for } m, 4 \text { for } p_{1}, \text { and } 250 \text { for } C_{1} . \\
C & =50 p+50 & & \text { Solve for } C .
\end{aligned}
$$

An equation connecting the points $(4,250)$ and $(12,650)$ is $C=50 p+50$.
STEP 3 Substitute the other values in the table to see if they fall on the same line.

$$
\begin{array}{lll}
350 \stackrel{?}{=} 50(6)+50 & 450 \stackrel{?}{=} 50(8)+50 & 550 \stackrel{?}{=} 50(10)+50 \\
350=350 \checkmark & 450=450 \checkmark & 550=550 \checkmark
\end{array}
$$

1. Oranges The table shows the prices of different weights of oranges. Can the situation be modeled by a linear equation? Explain. If possible, write an equation that gives the total cost as a function of the pounds of oranges.
2. Fabric The table shows the prices of different lengths of fabric. Can the situation be modeled by a linear equation? Explain. If possible, write an equation that gives the total cost as

Oranges (pounds)	4	6	8
Cost (dollars)	4.60	6.90	9.20

Fabric (yards)	3	5	9
Cost (dollars)	22.25	33.75	45.25

Algebra 1

Problem Solving Workshop: Mixed Problem Solving

For use with the lessons "Write Linear Equations in Slope-Intercept Form", "Use Linear Equations in Slope-Intercept Form", "Write Linear Equations in Point-Slope Form", and "Write Linear Equations in Standard Form"

1. Multi-Step Problem Ben jogs 6 miles in his first week. He runs 3 more miles every week for the next 8 weeks.
a. Write an equation that gives the total distance Ben jogged (in miles) as a function of weeks after the first week.
b. Find the distance that Ben runs 5 weeks after the first week.
2. Multi-Step Problem A carpet store charges $\$ 20$ per square yard of carpet after an initial installation fee. A customer paid a total of $\$ 800$ for 30 square yards.
a. Write an equation that gives the total cost of buying and installing a carpet as a function of the area of the room (in square yards).
b. Find the total cost of buying and installing 42 yards of carpet.
3. Multi-Step Problem The weekly cost of food for a family of four using the moderate cost plan in the United States increased at a relatively constant rate of $\$ 4.83$ per year from 1997 to 2004. In 2004, the weekly cost of food for a family of four was $\$ 186.90$.
a. What was the weekly cost of food for a family of four in 1997 ?
b. Write an equation that gives the weekly cost of food for a family of four as a function of the number of years since 1997.
c. Find the weekly cost of food for a family of four in 2010 assuming the same rate of increase.
4. Gridded Answer A website charges $\$ 12$ to buy a hat and a shipping charge of $\$ 5$ per order. Find the cost of buying 7 hats.
5. Open-Ended Describe a real-world situation that can be modeled by the function $y=2 x-3$.
6. Short Response One pound of chicken costs $\$ 3.50$ and one pound of ground beef costs $\$ 2.50$. Write an equation in standard form that models the possible combinations of pounds of chicken and pounds of ground beef that you can buy for $\$ 35$. Graph the equation. Explain what the intercepts of the graph mean in this situation.
7. Extended Response You are comparing the costs of moving companies for a truck rental. Company A charges $\$ 40$ to rent the truck plus $\$.08$ per mile. Company B charges a flat fee of $\$ 50$ to rent the truck.
a. Write an equation in slope-intercept form that models the cost of renting a truck from each moving company.
b. Graph the two equations from part (a) on the same coordinate plane.
c. Under what conditions would the cost of renting a truck from either moving company be the same?
d. Under what conditions would the cost of renting a truck from Company A be the best deal? Under what conditions would it be cheaper for you to rent a truck from Company B?
8. Short Response A bowling alley has a shoe rental fee and a per game fee. The table shows the total cost (in dollars) of bowling for different numbers of games. Explain why this situation can be modeled by a linear equation. What is the shoe rental fee? What is the per game fee?

Games	2	4	6	8
Total Cost	6.50	10.50	14.50	18.50

9. Open-Ended Bananas cost $\$.40$ per pound and pears cost $\$ 1$ per pound. Write an equation in standard form that models the possible combinations of bananas and pears that you can buy with a certain amount of money (in dollars). List three possible combinations.
\qquad

Problem Solving Workshop:

Gridded Answer Sheet
For use with Mixed Problem Solving

	©	(1)	
\bigcirc	\bigcirc	\bigcirc	\odot
	(0)	(0)	©
(1)	(1)	(1)	(1)
(2)	(2)	(2)	(2)
(3)	(3)	(3)	(3)
(4)	(4)	(4)	(4)
(5)	(5)	(5)	(5)
(6)	(6)	(6)	(6)
(7)	(7)	(7)	(7)
(8)	(8)	(8)	(8)
(9)	(9)	(9)	(9)

	©	(1)	
\odot	\bigcirc	\bigcirc	\bigcirc
	(0)	(0)	©
(1)	(1)	(1)	(1)
(2)	(2)	(2)	(2)
(3)	(3)	(3)	(3)
(4)	(4)	(4)	(4)
(5)	(5)	(5)	(5)
(6)	(6)	(6)	(6)
(7)	(7)	(7)	(7)
(8)	(8)	(8)	(8)
(9)	(9)	(9)	(9)

	(1)	(1)	
\bigcirc	\bigcirc	\odot	\bigcirc
	(-)	()	(0)
(1)	(1)	(1)	(1)
(2)	(2)	(2)	(2)
(3)	(3)	(3)	(3)
(4)	(4)	(4)	(4)
(5)	(5)	(5)	(5)
(6)	(6)	(6)	(6)
(7)	(1)	(7)	(7)
(8)	(8)	(8)	(8)
(9)	(9)	(9)	(9)

	(1)	(1)	
\bigcirc	\bigcirc	\bigcirc	\bigcirc
	(0)	(0)	(0)
(1)	(1)	(1)	(1)
(2)	(2)	(2)	(2)
(3)	(3)	(3)	(3)
(4)	(4)	(4)	(4)
(5)	(5)	(5)	(5)
(6)	(6)	(6)	(6)
(7)	(7)	(7)	(7)
(8)	(8)	(8)	(8)
(9)	(9)	(9)	(9)

	(1)	(1)	
\bigcirc	\odot	\odot	\bigcirc
	(0)	(0)	©
(1)	(1)	(1)	(1)
(2)	(2)	(2)	(2)
(3)	(3)	(3)	(3)
(4)	(4)	(4)	(4)
(5)	(5)	(5)	(5)
(6)	(6)	(6)	(6)
(7)	(7)	(7)	(7)
(8)	(8)	(8)	(8)
(9)	(9)	(2)	(9)

	\bigcirc	(1)	
\bigcirc	\odot	\odot	\bigcirc
	(0)	©	(1)
(1)	(1)	(1)	(1)
(2)	(2)	(2)	(2)
(3)	(3)	(3)	(3)
(4)	(4)	(4)	(4)
(5)	(5)	(5)	(5)
(6)	(6)	(6)	(6)
(7)	(7)	(7)	(7)
(8)	(8)	(8)	(8)
(9)	(9)	(9)	(9)

Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved

