4.3 Write Linear Equations in Point-Slope Form

Before	You wrote linear equations in slope-intercept form.
Now	You will write linear equations in point-slope form.
Why?	So you can model sports statistics, as in Ex. 43.

Key Vocabulary point-slope form

Consider the line that passes through the point (2, 3) with a slope of $\frac{1}{2}$.

CC.9-12.A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.*

USE POINT-SLOPE FORM

When an equation is in point-slope form, you can read the *x*- and *y*-coordinates of a point on the line and the slope of the line.

Let (*x*, *y*) where $x \neq 2$ be another point on the line. You can write an equation relating *x* and *y* using the slope formula, with $(x_1, y_1) = (2, 3)$ and $(x_2, y_2) = (x, y).$

 $\frac{1}{2}(x-2) = y-3$

Multiply each side by (x - 2).

The equation in *point-slope form* is $y - 3 = \frac{1}{2}(x - 2)$.

EXAMPLE 1 Write an equation in point-slope form

Write an equation in point-slope form of the line that passes through the point (4, -3) and has a slope of 2.

 $y - y_1 = m(x - x_1)$ Write point-slope form. y + 3 = 2(x - 4) Substitute 2 for *m*, 4 for $x_{1'}$ and -3 for y_1 .

GUIDED PRACTICE for Example 1

1. Write an equation in point-slope form of the line that passes through the point (-1, 4) and has a slope of -2.

 $\frac{1}{2} = \frac{y-3}{x-2}$ Substitute $\frac{1}{2}$ for *m*, 3 for y_1 , and 2 for x_1 .

EXAMPLE 2 Graph an equation in point-slope form

Graph the equation $y + 2 = \frac{2}{3}(x - 3)$.

Solution

Because the equation is in point-slope form, you know that the line has a slope of $\frac{2}{3}$ and passes

through the point (3, -2).

Plot the point (3, -2). Find a second point on the line using the slope. Draw a line through both points.

V

GUIDED PRACTICE for Example 2

2. Graph the equation y - 1 = -(x - 2).

EXAMPLE 3 Use point-slope form to write an equation

Write an equation in point-slope form of the line shown.

Solution

STEP 1 Find the slope of the line.

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - 1}{-1 - 1} = \frac{2}{-2} = -1$$

					y			
			$\overline{\ }$					
	(-1	, 3)					
				1	\mathbf{i}	(1,	1)	
_				1				~
					1	1		x
				1	1			

STEP 2 Write the equation in point-slope form. You can use either given point.Method 1 Use (-1, 3). Method 2 Use (1, 1).

 $y - y_1 = m(x - x_1) \qquad y - y_1 = m(x - x_1)$ $y - 3 = -(x + 1) \qquad y - 1 = -(x - 1)$

CHECK Check that the equations are equivalent by writing them in slope-intercept form.

y-3=-x-1	y-1 = -x+1
y = -x + 2	y = -x + 2

Animated Algebra activity at my.hrw.com

GUIDED PRACTICE for Example 3

3. Write an equation in point-slope form of the line that passes through the points (2, 3) and (4, 4).

EXAMPLE 4 Solve a multi-step problem

STICKERS You are designing a sticker to advertise your band. A company charges \$225 for the first 1000 stickers and \$80 for each additional 1000 stickers. Write an equation that gives the total cost (in dollars) of stickers as a function of the number (in thousands) of stickers ordered. Find the cost of 9000 stickers.

Solution

STEP 1 **Identify** the rate of change and a data pair. Let *C* be the cost (in dollars) and *s* be the number of stickers (in thousands).

Rate of change, *m*: \$80 per 1 thousand stickers **Data pair (s_1, C_1):** (1 thousand stickers, \$225)

STEP 2 Write an equation using point-slope form. Rewrite the equation in slope-intercept form so that cost is a function of the number of stickers.

$C - C_1 = m(s - s_1)$	Write point-slope form.
C - 225 = 80(s - 1)	Substitute 80 for m , 1 for s_1 , and 225 for C_1 .
C = 80s + 145	Solve for C.

STEP 3 Find the cost of 9000 stickers.

C = 80(9) + 145 = 865 Substitute 9 for *s*. Simplify.

The cost of 9000 stickers is \$865.

EXAMPLE 5 Write a real-world linear model from a table

WORKING RANCH The table shows the cost of visiting a working ranch for one day and night for different numbers of people. Can the situation be modeled by a linear equation? *Explain.* If possible, write an equation that gives the cost as a function of the number of people in the group.

Number of people	4	6	8	10	12
Cost (dollars)	250	350	450	550	650

Solution

STEP 1 Find the rate of change for consecutive data pairs in the table.

 $\frac{350-250}{6-4} = 50, \quad \frac{450-350}{8-6} = 50, \quad \frac{550-450}{10-8} = 50, \quad \frac{650-550}{12-10} = 50$

Because the cost increases at a constant rate of \$50 per person, the situation can be modeled by a linear equation.

STEP 2 Use point-slope form to write the equation. Let *C* be the cost (in dollars) and *p* be the number of people. Use the data pair (4, 250).

 $C - C_1 = m (p - p_1)$ Write point-slope form.C - 250 = 50(p - 4)Substitute 50 for m, 4 for p_1 , and 250 for C_1 .C = 50p + 50Solve for C.

AVOID ERRORS

Remember that *s* is given in thousands. To find the cost of 9000 stickers, substitute 9 for *s*.

- **4. WHAT IF?** In Example 4, suppose a second company charges \$250 for the first 1000 stickers. The cost of each additional 1000 stickers is \$60.
 - **a.** Write an equation that gives the total cost (in dollars) of the stickers as a function of the number (in thousands) of stickers ordered.
 - b. Which company would charge you less for 9000 stickers?
- **5. MAILING COSTS** The table shows the cost (in dollars) of sending a single piece of first class mail for different weights. Can the situation be modeled by a linear equation? *Explain*. If possible, write an equation that gives the cost of sending a piece of mail as a function of its weight (in ounces).

Weight (ounces)	1	4	5	10	12
Cost (dollars)	0.37	1.06	1.29	2.44	2.90

GRAPHING EQUATIONS Graph the equation.

★ SHORT RESPONSE Tell whether the data in the table can be modeled by a linear equation. Explain. If possible, write an equation in point-slope form that relates *y* and *x*.

31.	x	2	4	6	8	10	32.	x	1	2	3	5	7
	y	-1	5	15	29	47		y	1.2	1.4	1.6	2	2.4
33.	x	1	2	3	4	5	34.	x	-3	-1	1	3	5
	y	2	-3	4	-5	6		y	16	10	4	-2	-8

CHALLENGE Find the value of k so that the line passing through the given points has slope *m*. Write an equation of the line in point-slope form.

35. (k, 4k), (k + 2, 3k), m = -1

36. (-k + 1, 3), (3, k + 3), m = 3

x

PROBLEM SOLVING

EXAMPLE 4 for Exs. 37, 39, 40	37.	TELEVISION In order to use an excerpt from a movie in a new television show, the television producer must pay the director of the movie \$790 for the first 2 minutes of the excerpt and \$130 per minute after that.								
		a. Write an equation that gives the total cost (in dollars) of using the excerpt as a function of the length (in minutes) of the excerpt.								
		b. Find the total cost	of using	an excer	pt that is	8 minutes	s long.			
EXAMPLE 5 for Exs. 38, 41	38.	★ SHORT RESPONSE a monthly fee for Inter of Internet service for of months. <i>Explain</i> we equation. What is the	A schoo ernet serv r the scho vhy the si e installa	l district vice. The col distric tuation c tion fee?	pays an i table sho ct over di an be mo What is t	nstallation ws the tot fferent nu deled by a he month	n fee and tal cost imbers a linear ly service	fee?		
		Months of service	2	4	6	8	10	12		
		Total cost (dollars)	9,378	12,806	16,234	19,662	23,090	26,518		
	40.	a small company inc sales were \$97,000. W function of the numb TRAFFIC DELAYS Fro the annual excess fue traffic delays increas In 1995 each person of a. Write an equation (in gallons per per since 1990. b. How much excess Dimated Algebra	reased by /rite an e per of yea y.hrw.com m 1990 to el (in gall ed by abo consume that give rson) as a fuel was at my.hrw.co	y \$10,000 quation t rs since 1 o 2001 in ons per p out 1.4 ga d about 3 es the ann function consume m	per year. hat gives 1994. Find Boston, M person) co llons per 7 gallons nual exce of the m ed per per	In 1997 th the annu d the sales Massachus onsumed o person ea of excess ss fuel umber of y	ne annual al sales as s in 2000. setts, due to ach year. fuel. years 01?	a a		
	41.	EXTENDED RESPO prints of digital photo same for the first 30 p	NSE The os from a prints. The	table sho in online here is als	service.	ost of orde The cost p ping charg	ering sets per print is ge.	of the		
		Number of prints	1	2	5	8				
		Total cost (dollars)	1.98	2.47	3.94	5.41				
		a. <i>Explain</i> why the si	tuation c	an be mo	odeled by	a linear e	equation.			
		b. Write an equation dollars) of a set of	in point- prints to	slope for the num	m that re ber of pri	lates the t nts ordere	total cost (ed.	(in		

- c. Find the shipping charge for up to 10 prints.
- **d.** The cost of 15 prints is \$9.14. The shipping charge increases after the first 10 prints. Find the shipping charge for 15 prints.

- **42. AQUACULTURE** Aquaculture is the farming of fish and other aquatic animals. World aquaculture increased at a relatively constant rate from 1991 to 2002. In 1994 world aquaculture was about 20.8 million metric tons. In 2000 world aquaculture was about 35.5 million metric tons.
 - **a.** Write an equation that gives world aquaculture (in millions of metric tons) as a function of the number of years since 1991.
 - **b.** In 2001 China was responsible for 70.2% of world aquaculture. Approximate China's aquaculture in 2001.
- **43. MARATHON** The diagram shows a marathon runner's speed at several outdoor temperatures.

- **a.** Write an equation in point-slope form that relates running speed (in feet per second) to temperature (in degrees Fahrenheit).
- **b.** Estimate the runner's speed when the temperature is 80°F.
- **44. CHALLENGE** The number of cans recycled per pound of aluminum recycled in the U.S. increased at a relatively constant rate from 1972 to 2002. In 1977 about 23.5 cans per pound of aluminum were recycled. In 2000, about 33.1 cans per pound of aluminum were recycled.
 - **a.** Write an equation that gives the number of cans recycled per pound of aluminum recycled as a function of the number of years since 1972.
 - **b.** In 2002, there were 53.8 billion aluminum cans collected for recycling. Approximately how many pounds of aluminum were collected? *Explain* how you found your answer.