\qquad

Problem Solving Workshop:
 Worked Out Example

For use with the lesson "Write Equations of Parallel and Perpendicular Lines"
PROBLEM Streets A map of a city shows streets as lines on a coordinate grid. Main Street is modeled by the equation $y=-\frac{1}{4} x+4$. Mill Road intersects Main Street at the point $(8,2)$ and is perpendicular to Main Street. Find the equation that models Mill Road.

STEP 1 Read and Understand

What do you know?

You know the equation that models Main Street and that Mill Road is perpendicular to Main Street at the point $(8,2)$.

What do you want to find out?
The equation that models Mill Road.
STEP 2 Make a Plan Use what you know to find the slope of Mill Road. Then find the equation for Mill Road.

STEP 3 Solve the Problem Because Main Street and Mill Road are perpendicular, the slopes of the lines are negative reciprocals. So, the slope of the line through $(8,2)$ that is perpendicular to Main Street is 4 . Use the slope to write an equation in point-slope form.
$y-y_{1}=4\left(x-x_{1}\right) \quad$ Write point-slope form.
$y-2=4(x-8) \quad$ Substitute 2 for y_{1} and 8 for x_{1}.
$y-2=4 x-32 \quad$ Simplify.
$y=4 x-30 \quad$ Solve for y.
The equation that models Mill Road is $y=4 x-30$.
STEP 4 Look Back Substitute 8 for x to see if $y=2$.
$y=4(8)-30$
$y=2$

Substitute 8 for x.
Simplify.

The answer is correct.

1. Streets A map of a city shows streets as lines on a coordinate grid. Cherry Street is modeled by the equation $y=-2 x-3$. June Road intersects Cherry Street at the point $(-4,5)$ and is perpendicular to Cherry Street. Find the equation that models June Road.
2. What If? In Exercise 1, Blossom Street is perpendicular to June Road at the point $(4,9)$. Find the equation that models Blossom Street.
3. Error Analysis Describe and correct the error made in solving Exercise 1. The slope of June Road is $-\frac{1}{2}$.

$$
\begin{aligned}
y-5 & =-\frac{1}{2}(x+4) \\
y & =-\frac{1}{2} x+3
\end{aligned}
$$

