CHAPTER REVIEW

@HomeTutor

- my.hrw.com
- Multi-Language Glossary
- Vocabulary practice

REVIEW KEY VOCABULARY

- graph of an inequality
- equivalent inequalities
- compound inequality

VOCABULARY EXERCISES

- absolute value equation
- absolute deviation

- solution of an inequality in two variables
- linear inequality in two variables
- graph of an inequality in two variables, half-plane
- 1. Translate the verbal sentence into an absolute value equation: "The absolute deviation of x from 19 is 8."
- **2.** Identify three ordered pairs that are solutions of $2x 3y \ge -10$.
- **3. WRITING** When you graph a linear inequality in two variables, how do you know whether the boundary line is a solid line or a dashed line? How do you know which half-plane to shade?

REVIEW EXAMPLES AND EXERCISES

Use the review examples and exercises below to check your understanding of the concepts you have learned in each lesson of this chapter.

Solve Inequalities Using Addition and Subtraction 5.1

EXAMPLE

Solve $x - 2.1 \le 1.4$. Graph your solution.

 $x - 2.1 \le 1.4$ Write original inequality. $x - 2.1 + 2.1 \le 1.4 + 2.1$ Add 2.1 to each side.

> $x \le 3.5$ Simplify.

The solutions are all real numbers less than or equal to 3.5.

EXERCISES

EXAMPLES 1, 2, 3, and 4 for Exs. 4–7

4. **GEOGRAPHY** The lowest elevation in Mexico is -10 meters at Laguna Salada. Write and graph an inequality that describes all elevations in Mexico that are greater than the lowest elevation.

Solve the inequality. Graph your solution.

5.
$$x + 5 > -13$$
 6. $m - 9 \ge -4$ **7.** $s + 3.7 < 1$

CHAPTER REVIEW

Solve the inequality. Graph your solution.

1, 2, 3, 4, and 5 for Exs. 8–12

EXAMPLES

EXAMPLES 1, 2, 3, and 4

for Exs. 13–19

- **9.** $\frac{n}{-4.5} < -8$ **10.** -3x > 27**8.** $\frac{p}{2} \le 5$ 11. $2y \ge 18$
- **12. GYMNASTICS** In men's gymnastics, an athlete competes in 6 events. Suppose that an athlete's average score per event is at most 9.7 points. Write and solve an inequality to find the possible total scores for the athlete.

5.3 Solve Multi-Step Inequalities

EXAMPLE

Solve $-4x + 7 \ge -13$. Graph your solution.

 $-4x + 7 \ge -13$ Write original inequality.

- $-4x \ge -20$ Subtract 7 from each side.
 - $x \leq 5$ Divide each side by -4. Reverse inequality symbol.
- The solutions are all real numbers less than or equal to 5.

EXERCISES

Solve the inequality, if possible. Graph your solution.

13. 2g + 11 < 25

14. $\frac{2}{3}r - 4 \ge 1$

15. $1 - 3x \le -14 + 2x$

17. 8(t-1) > -8 + 8t**16.** 3(q+1) < 3q+7

18. $-3(2n-1) \ge 1 - 8n$

19. TICKET PURCHASES You can order discount movie tickets from a website for \$7 each. You must also pay a shipping fee of \$4. You want to spend no more than \$40 on movie tickets. Find the possible numbers of movie tickets that vou can order.

EXAMPLE

Solve 4|5x-3| + 6 = 30.

First, rewrite the equation in the form |ax + b| = c.

4 5x-3 + 6 = 30	Write original equation.
4 5x-3 = 24	Subtract 6 from each side.
5x-3 = 6	Divide each side by 4.

Next, solve the absolute value equation.

5x - 3 = 6or5x - 3 = -6Rewrite as two equations.5x = 9or5x = -3Add 3 to each side.x = 1.8orx = -0.6Divide each side by 5.

▶ The solutions are −0.6 and 1.8.

EXERCISES

EXAMPLES 1, 2, 3, 4, and 5 for Exs. 24–30 Solve the equation, if possible.24. |r| = 725. |a+6| = 226. |2c+5| = 2127. 2|x-3| + 1 = 528. 3|2q+1| - 5 = 129. 4|3p-2| + 5 = 11

30. BOWLING In tenpin bowling, the height of each bowling pin must be 15 inches with an absolute deviation of 0.03125 inch. Find the minimum and maximum possible heights of a bowling pin.

CHAPTER REVIEW

EXAMPLE

Graph the inequality y < 3x - 1.

STEP 1 Graph the equation y = 3x - 1. The inequality is <, so use a dashed line.

STEP 2 Test (0, 0) in y < 3x - 1.

 $0 \stackrel{?}{<} 3(0) - 1$

$$0 < -1 \times$$

STEP 3 Shade the half-plane that does not contain (0, 0), because (0, 0) is *not* a solution of the inequality.

(9, -5)

 $y \ge 3$

EXERCISES

EXAMPLES	Tell whether the ordered pair is a solution of $-3x + 2y \ge 16$.			
1, 2, 3, 4, and 5 for Exs. 37–44	37. (-2, 8)	38. (-1, -1)	39. (-2, 10)	40.
	Graph the inequality.			
	41. $y > 2x + 3$	42. $y \le \frac{1}{2}x - 1$	43. $3x - 2y < 12$	44.