BIG IDEAS

Applying Properties of Inequality

You can apply the properties of inequality to solve inequalities. The properties listed below are also true for inequalities involving \leq and \geq .

Property	If <i>a</i> < <i>b</i> , then	If <i>a</i> > <i>b</i> , then
Addition property of inequality	a + c < b + c.	a+c>b+c.
Subtraction property of inequality	a - c < b - c.	a-c>b-c.
Multiplication property of inequality	ac < bc if $c > 0$. ac > bc if $c < 0$.	ac > bc if $c > 0$. ac < bc if $c < 0$.
Division property of inequality	$\frac{a}{c} < \frac{b}{c}$ if $c > 0$.	$\frac{a}{c} > \frac{b}{c}$ if $c > 0$.
	$\frac{a}{c} > \frac{b}{c}$ if $c < 0$.	$\frac{a}{c} < \frac{b}{c}$ if $c < 0$.

Big Idea **2**

Big Idea 🚺

Using Statements with And or Or

An absolute value equation can be rewritten as two equations joined by *or*. An absolute value inequality can be rewritten as a compound inequality with *and* or *or*. In the statements below, < can be replaced by \leq , and > can be replaced by \geq .

Absolute value equation or inequality	Equivalent statement with and or or	
$ ax+b =c,c\geq 0$	ax + b = c or ax + b = -c	
$ ax + b < c, c \ge 0$	-c < ax + b < c	
$ ax + b > c, c \ge 0$	ax + b < -c or ax + b > c	

Graphing Inequalities

You use a number line to graph an inequality in one variable. Similarly, you use a coordinate plane to graph a linear inequality in two variables (including cases where one of the variables has a coefficient of 0, such as 0x + y < 1, or y < 1).

Graphing inequalities in one variable	Graphing linear inequalities in two variables
 Graph simple inequalities: 1. Solve for the variable. 2. Draw an open circle for < or > and a closed circle for ≤ or ≥. Draw an arrow in the appropriate direction. Graph compound inequalities: 1. Solve the compound inequality. 2. Use the union of graphs of simple inequalities for <i>or</i>. Use the intersection for <i>and</i>. 	 Graph the boundary line. Use a solid line for ≤ or ≥ and a dashed line for < or >. Test a point that does not lie on the boundary line. Shade the half-plane containing the point if the ordered pair is a solution of the inequality. Shade the other half-plane if the ordered pair is <i>not</i> a solution.