Extension Solve Linear Inequalities by Graphing

GOAL Use graphs to solve linear inequalities.

You have seen how to solve linear inequalities algebraically. You can also solve linear inequalities graphically.

KEY CONCEPT
For Your Noteboook

Solving Linear Inequalities Graphically

STEP 1 Write the inequality in one of the following forms: $a x+b<0$, $a x+b \leq 0, a x+b>0$, or $a x+b \geq 0$.

STEP 2 Write the related equation $y=a x+b$.
STEP 3 Graph the equation $y=a x+b$.

- The solutions of $a x+b>0$ are the x-coordinates of the points on the graph of $y=a x+b$ that lie above the x-axis.
- The solutions of $a x+b<0$ are the x-coordinates of the points on the graph of $y=a x+b$ that lie below the x-axis.
- If the inequality symbol is \leq or \geq, then the x-intercept of the graph is also a solution.

EXAMPLE 1 Solve an inequality graphically

Solve $3 x+2>8$ graphically.

Solution

STEP 1 Write the inequality in the form $a x+b>0$.

$$
\begin{array}{ll}
3 x+2>8 & \text { Write original inequality. } \\
3 x-6>0 & \text { Subtract } 8 \text { from each side. }
\end{array}
$$

STEP 2 Write the related equation $y=3 x-6$.
STEP 3 Graph the equation $y=3 x-6$.
The inequality in Step 1 is in the form $a x+b>0$, and the x-intercept of the graph in Step 3 is 2 . So, $x>2$.

- The solutions are all real numbers greater than 2. Check by substituting a number greater than 2 in the original inequality.

$$
\text { CHECK } \begin{aligned}
3 x+2 & >8 & & \text { Write original inequality. } \\
3(4)+2 & \stackrel{?}{>} 8 & & \text { Substitute } 4 \text { for } x . \\
14 & >8 \checkmark & & \text { Solution checks. }
\end{aligned}
$$

EXAMPLE 2 Approximate a real-world solution

CELL PHONES Your cell phone plan costs $\$ 49.99$ per month for a given number of minutes. Each additional minute or part of a minute costs $\$.40$. You budgeted $\$ 55$ per month for phone costs. What are the possible additional minutes x that you can afford each month?

Solution

STEP 1 Write a verbal model. Then write an inequality.

Write the inequality in the form $a x+b \leq 0$.

$$
\begin{array}{cl}
0.40 x+49.99 \leq 55 & \text { Write original inequality. } \\
0.40 x-5.01 \leq 0 & \text { Subtract } 55 \text { from each side. }
\end{array}
$$

STEP 2 Write the related equation $y=0.40 x-5.01$.
STEP 3 Graph the equation $y=0.40 x-5.01$ on a graphing calculator.
Use the trace feature of the graphing calculator to find the x-intercept of the graph.

The inequality in Step 1 is in the form $a x+b \leq 0$, and the x-intercept is about 12.5. Because a part of a minute costs $\$.40$, round 12.5 down to 12 to be sure that you stay within your budget.
\rightarrow You can afford up to 12 additional minutes.

Practice

EXAMPLES
1 and 2
for Exs. 1-4

Solve the inequality graphically.

1. $2 x+5>11$
2. $\frac{1}{2} x+6 \leq 13$
3. $0.2 x-15.75<27$
4. CABLE COSTS Your family has a cable television package that costs $\$ 40.99$ per month. Pay-per-view movies cost $\$ 3.95$ each. Your family budgets $\$ 55$ per month for cable television costs. What are the possible numbers of pay-per-view movies that your family can afford each month?
