Extension Solve Linear Inequalities by Graphing

GOAL Use graphs to solve linear inequalities.

You have seen how to solve linear inequalities algebraically. You can also solve linear inequalities graphically.

KEY CONCEPT

For Your Notebook

Solving Linear Inequalities Graphically

- **STEP 1** Write the inequality in one of the following forms: ax + b < 0, $ax + b \le 0$, ax + b > 0, or $ax + b \ge 0$.
- **STEP 2** Write the related equation y = ax + b.
- **STEP 3** Graph the equation y = ax + b.
 - The solutions of ax + b > 0 are the *x*-coordinates of the points on the graph of y = ax + b that lie above the *x*-axis.
 - The solutions of ax + b < 0 are the *x*-coordinates of the points on the graph of y = ax + b that lie below the *x*-axis.
 - If the inequality symbol is ≤ or ≥, then the *x*-intercept of the graph is also a solution.

EXAMPLE 1 Solve an inequality graphically

Solve 3x + 2 > 8 graphically.

Solution

STEP 1 Write the inequality in the form ax + b > 0.

3x + 2 > 8 Write original inequality.

- 3x 6 > 0 Subtract 8 from each side.
- **STEP 2** Write the related equation y = 3x 6.

STEP 3 Graph the equation y = 3x - 6.

The inequality in Step 1 is in the form ax + b > 0, and the *x*-intercept of the graph in Step 3 is 2. So, x > 2.

The solutions are all real numbers greater than 2. Check by substituting a number greater than 2 in the original inequality.

CHECK	3 x + 2 > 8	Write original inequality.
	3(4) + 2 [?] 8	Substitute 4 for <i>x</i> .
	14 > 8 🗸	Solution checks.

CC.9-12.A.REI.10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).

COMPARE FUNCTION VALUES

If you think of the equation y = ax + bas a function, the solutions of ax + b > 0and ax + b < 0 tell you where the values of the function are positive or negative.

EXAMPLE 2

Approximate a real-world solution

CELL PHONES Your cell phone plan costs \$49.99 per month for a given number of minutes. Each additional minute or part of a minute costs \$.40. You budgeted \$55 per month for phone costs. What are the possible additional minutes *x* that you can afford each month?

Solution

STEP 1 Write a verbal model. Then write an inequality.

- **STEP 2** Write the related equation y = 0.40x 5.01.
- **STEP 3** Graph the equation y = 0.40x 5.01 on a graphing calculator.

Use the *trace* feature of the graphing calculator to find the *x*-intercept of the graph.

The inequality in Step 1 is in the form $ax + b \le 0$, and the *x*-intercept is about 12.5. Because a part of a minute costs \$.40, round 12.5 down to 12 to be sure that you stay within your budget.

> You can afford up to 12 additional minutes.

PRACTICE

