CHAPTER
 5 Graphing Calculators and Logic

A graphing calculator can be used to test whether or not a mathematical statement containing equalities, inequalities, and logical connectors is true.
The TEST menu on a graphing calculator contains the functions $=, \neq,>, \geq,<$, and \leq. Example 1 shows how to test and interpret the results of these functions.

EXAMPLE 1 Test equalities and inequalities

Use a graphing calculator to determine whether each statement is true or false.
a. $\frac{6}{8}=\frac{8}{12}$
b. $-5 \cdot(3+1)<-16 \div(6-2)$

Solution:

a. Enter this sequence into the calculator: $6 \div 8$ 2nd TEST $=8 \div 12$ ENITER

The output shows 0 . This means the statement is false.
b. Enter this sequence into the calculator:
$-5 \cdot(3+1)$ 2nd TEST $<-16 \div(6-2)$ ENTER
The output shows 1 . This means the statement is true.
Logical connectors for and, the inclusive or (or), and the exclusive or (xor) are featured in the LOGIC menu within the TEST menu.

EXAMPLE2 Test logic statements

Use a graphing calculator to determine whether each statement is true or false.
a. $-8 \div-4 \neq-2$ and $5+8<15-3$
b. $5+(-9) \geq 0$ or $-3 \cdot-3>-3 \cdot 3$
c. $6>-2-(-5)$ xor $3 \cdot 2=30 \div 5$

Solution:

a. - $8 \div-4$ 2nd TEST $\neq-2$ 2nd TEST LOGIC and
$5+8$ 2nd TEST $<15-3$ ENTER
The output shows 0 . This means the statement is false. Although the first part of this statement is true, the second part is not. With and statements, both parts need to be true. Otherwise, the entire statement is false.
b. $5+(-9)$ 2nd TEST ≥ 0 2nd TEST LOGIC or
$-3 \cdot-3$ 2nd TEST $>-3 \cdot 3$ ENTER
The output shows 1 . The statement is true. Only one part of an or statement needs to be true for the entire statement to be true.
c. 6 2nd TEST > -2 - (-5) 2nd TEST LOGIC xor
$3 \cdot 2$ 2nd TEST $=30 \div 5$ ENTER
The output shows 0 . The statement is false. With exclusive or statements, only one part, not both parts, must be true for the entire statement to be true. Here both parts are true, so the entire statement is false.
\qquad

CHAPTER
 5
 Graphing Calculators and Logic continued

You can also use the TABLE feature of a graphing calculator to test different values of a variable in an algebraic statement.

EXAMTPLE3 Test logic connectors on algebraic statements

Use a graphing calculator to determine whether $-x+1<0$ and $x \geq-2$ is true or false for $x=-3,-2,-1,0,1,2,3$.

Solution:

In the $Y=$ screen, enter the algebraic statement for Y_{1} as shown below on the left. Then set the table to evaluate $x=-3,-2,-1,0,1,2,3$ and press 2nd TABLE to get the get the screen shown below on the right.

This shows that the statement is true for $x=2,3$, but false for $x=-3,-2,-1,0,1$.

Practice

Use a graphing calculator to determine whether each statement is true or false.

1. $1.5 \cdot 6 \neq 9$
2. $13-(-4)<8$
3. $64 \div 6 \geq 50 \div 4$
4. $8=4+2 \cdot 2$

Use a graphing calculator to determine whether each logic statement is true or false.
5. $6-2<-5$ or $4 \div 2 \neq-3-(-5)$
6. $11>-2+14$ xor $-4 \cdot-6 \leq-24$
7. $5 \div 2 \cdot 4=10$ and
8. $1-3 \cdot 4 \geq-7-8$ and
$3-(-4 \cdot-1)=-1$
$20 \div 4<0.5 \div 0.1$
9. $1-8 \leq-2 \div 2$ xor
10. $5+3 \leq-12 \div-4$ or
$3+2 \neq 10 \div 5$
$8 \cdot 2=7-(1-10)$

Use a graphing calculator to determine whether each algebraic statement is true or false for the given values.

11. $7-x<-2$ and $5 \geq 10 x$ for $x=-3,-2,-1,0,1,2,3$
12. $4 x+2=-10$ or $3 x>-6$ for $x=-3,-2,-1,0,1,2,3$
13. $9<3 x+12$ or $-2 x \neq 4$ for $x=-3,-2,-1,0,1,2,3$
14. $x+1 \leq 0$ xor $21 \geq 8 x-5$ for $x=-1,0,1,2,3,4,5$
15. $3 \div 5<2 x$ and $3-x=2 x$ for $x=-1,0,1,2,3,4,5$
16. $x-(-3) \neq 5$ xor $x \div 2<-1$ for $x=-3,-2,-1,0,1,2,3$
