Solving Absolute Value Equations by Graphing CHAPTER 5

Absolute value equations in the form |ax + b| = c, where a, b, and c are constants, can be solved by graphing corresponding functions in the form y = |ax + b| - c and finding the zeros. The x-values of the points where the graphs intersect the x-axis are the solutions.

KEY CONCEPT

Number of Possible Solutions to an **Absolute Value Equation**

An absolute value equation can have zero, one, or two solutions.

Examples of each type are shown in Example 1.

Determine the number of solutions to an EXAMPLE 1 absolute value equation by graphing

Determine the number of solutions to each absolute value equation by graphing.

- **b.** $\frac{1}{2}|x-2|=0$ **c.** 2|x-1|=-1**a.** |x+1| = 2

3 2

4 3 2

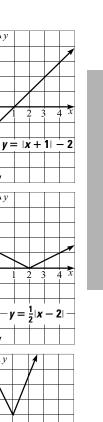
-1

2 T

- 3

3 2 1

-2


3

Solution:

a. Graph y = |x + 1| - 2. There are two zeros; one at x = 1 and the other at x = -3.

b. Graph $y = \frac{1}{2} |x - 2|$. There is one zero at x = 2.

c. Graph y = 2|x - 1| + 1. There are 0 solutions.

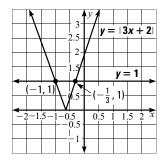
Pre-AP Copymasters

v = 2|x - 1| + 1

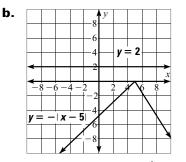
Date

CHAPTER Solving Absolute Value Equations by

Graphing continued


Notice the values of the constant c in each equation. In Example 1a, c = 2. When c > 0, there are 2 solutions. In Example 1b, c = 0. When c = 0, there is 1 solution. In Example 1c, c = -1. When c < 0, there are 0 solutions.

EXAMPLE2 Find solutions to |ax + b| = c by graphing y = |ax + b| and y = c


- **a.** Show how the graphs of y = |3x + 2| and y = 1 can be used to find the solutions of |3x + 2| = 1.
- **b.** Explain what the graphs of y = -|x 5| and y = 2 tell about the solutions of y = -|x 5| 2.

Solution:

a.

The *x*-coordinates of the points where these two graphs intersect are the solutions. The solutions to |3x + 2| = 1 are x = -1 and $x = -\frac{1}{3}$.

The graphs of y = -|x - 5|and y = 2 do not intersect. Therefore, there are no solutions to the equation y = -|x - 5| - 2.

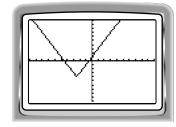
The solutions to absolute value equations can be found using a graphing calculator, as shown in Example 3.

EXAMPLE3 Use a graphing calculator to solve absolute value equations

Solve the absolute value equation 0 = |2x + 5| - 4 by using a graphing calculator.

Solution:

Enter the absolute value function into Y= using the



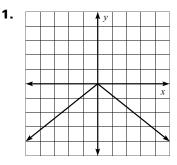
domain and range.

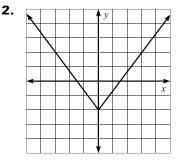
Then graph. The graph of the absolute value function y = |2x + 5| - 4 is shown.

The solutions can be found using the zero command from the 2nd CALC menu on the graphing calculator.

The solutions are at x = -0.5 and x = -4.5.

96


Copyright © Holt McDougal. All rights reserved.


Date

CHAPTER 5 Solving Absolute Value Equations by Graphing continued

Practice

Determine the number of zeroes in each graph.

Determine the number of solutions to each absolute value equation.

- **3.** |x-4| = 0 **4.** |4-3x| = 7
- **5.** -|-(2+x)| = 1 **6.** -|x-3| = -6

Solve each absolute value equation using a graphing calculator.

7. $0 = x + 3 $	8. $0 = -x - 2 $	9. $0 = - 2x $
10. $0 = 2x - 3 + 1$	11. $0 = x + 6 - 2$	12. $ 4x + 3 = 3$
13. $ 7 - x = 0$	14. $- 2-x =3$	15. $ -0.5x = -0.5$

Problem Solving

- **16.** Justin graphed y = |2x 4| and y = 1 on the same coordinate grid. Randy graphed the function y = |2x 4| 1 on another grid. How do the solutions of Justin's graphed functions compare to the zeros of Randy's graphed function?
- **17.** Alesha graphed y = -|x + 6| and y = 1 on the same coordinate grid. Explain how Alesha can use these graphs to find the solution to the equation -|x + 6| = 1. Then find the solution to the equation -|x + 6| = 1.
- **18.** Draw a graph of an absolute value equation that has no solution. Explain why it has no solution.
- **19.** Write an absolute value equation with exactly one solution. Then find its solution.
- **20.** Mattie wrote an equation in the form y = |ax + b| c that had no solution. What possible values for *a*, *b*, and *c* could Mattie have used?
- **21.** Dave wrote an equation in the form y = |ax + b| c that had two solutions. What possible values for *a*, *b*, and *c* could Dave have used?
- **22.** Taylor wrote an equation in the form y = |ax + b| c that had exactly one solution. What possible values for *a*, *b*, and *c* could Taylor have used?