Extension

Graph Absolute Value Functions

GOAL Graph absolute value functions.

Key Vocabulary absolute value

The function f(x) = |x| is an example of an *absolute value function* and is the parent function for all absolute value functions. You can graph absolute value functions by using a table of values, as shown below for f(x) = |x|.

CC.9-12.F.BF.3 Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x+k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology.

APPLY

TRANSFORMATIONS The two graphs in Example 1 are translations of the graph of f(x) = |x|. The graph in part (a) is

a horizontal translation. The graph in part (b) is a vertical translation.

KEY CONCEPT

For Your Notebook

Graph of Parent Function for Absolute Value Functions

The domain of the parent absolute value function is all real numbers. The range is $y \ge 0$.

The graph consists of two rays with a common endpoint called the vertex of the graph. The minimum value of the function occurs at the vertex.

EXAMPLE 1 Graph g(x) = |x - h| and g(x) = |x| + k

Graph each function. Compare the graph with the graph of f(x) = |x|.

a.
$$g(x) = |x-2|$$

STEP 1 Make a table of values.

X	0	1	2	3	4
g(x)	2	1	0	1	2

STEP 2 Graph the function.

STEP 3 Compare the graphs of g and f. The graph of g(x) = |x - 2| is 2 units to the right of the graph of f(x) = |x|.

b.
$$g(x) = |x| - 1$$

STEP 1 Make a table of values.

X	-2	-1	0	1	2
g(x)	1	0	-1	0	1

STEP 2 Graph the function.

STEP 3 Compare the graphs of g and f. The graph of g(x) = |x| - 1 is 1 unit below the graph of f(x) = |x|.

EXAMPLE 2 Graph g(x) = a | x |

Graph each function. Compare the graph with the graph of f(x) = |x|.

a.
$$g(x) = 4|x|$$

STEP 1 Make a table of values.

X	-2	-1	0	1	2
g(x)	8	4	0	4	8

STEP 2 Graph the function.

STEP 3 Compare the graphs of g and f. The graph of g(x) = 4|x| opens up and is narrower than the graph of f(x) = |x|.

b.
$$g(x) = -0.5 |x|$$

STEP 1 Make a table of values.

X	-4	-2	0	2	4
g(x)	-2	-1	0	-1	-2

STEP 2 Graph the function.

STEP 3 Compare the graphs of g and f. The graph of g(x) = -0.5 |x| opens down and is wider than the graph of f(x) = |x|.

KEY CONCEPT

For Your Notebook

Comparing Graphs of Absolute Value Functions with the Graph of f(x) = |x|

$$g(x) = |x - h|$$

If h > 0, the graph of g is |h| units to the right of the graph of f(x) = |x|.

If h < 0, the graph of g is |h| units to the left of the graph of f(x) = |x|.

$$g(x) = |x| + k$$

If k > 0, the graph of g is |k| units above the graph of f(x) = |x|.

If k < 0, the graph of g is |k| units below the graph of f(x) = |x|.

$$g(x) = a|x|$$

If |a| > 1, the graph of g is narrower than the graph of f(x) = |x|. If 0 < |a| < 1, the graph of g is wider.

If a > 0, the graph of g opens up. If a < 0, the graph opens down.

PRACTICE

EXAMPLES 1 and 2

: APPLY

TRANSFORMATIONS

The graph in part (a) of Example 2 is a vertical

stretch of the graph of f(x) = |x|. The graph

in part (b) is a vertical

shrink with a reflection in the *x*-axis of the graph of f(x) = |x|.

for Exs. 1-6

Graph the function. Compare the graph with the graph of f(x) = |x|.

1.
$$g(x) = |x + 3|$$

2.
$$g(x) = |x| + 5$$

2.
$$g(x) = |x| + 5$$
 3. $g(x) = |x| - 7$

4.
$$g(x) = 2|x|$$

5.
$$g(x) = 0.6 |x|$$
 6. $g(x) = -3 |x|$

6.
$$g(x) = -3 | x$$

7. For the absolute value function g(x) = -|x| + 1, identify the function's domain and range, the vertex of the function's graph, and the function's minimum or maximum value.