## Extension <br> Graph Absolute Value Functions

## Key Vocabulary <br> -absolute value

CC.9-12.F.BF. 3 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of $k$ (both positive and negative); find the value of $k$ given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology.

## GOAL Graph absolute value functions.

The function $f(x)=|x|$ is an example of an absolute value function and is the parent function for all absolute value functions. You can graph absolute value functions by using a table of values, as shown below for $f(x)=|x|$.

## KEY CONCEPT

## For Your Notebook

## Graph of Parent Function for Absolute Value Functions

The domain of the parent absolute value function is all real numbers. The range is $y \geq 0$.


The graph consists of two rays with a common endpoint called the vertex of the graph. The minimum value of the function occurs at the vertex.

## EXAMPLE 1 Graph $\boldsymbol{g}(x)=|\boldsymbol{x}-\boldsymbol{h}|$ and $\boldsymbol{g}(\boldsymbol{x})=|\boldsymbol{x}|+\boldsymbol{k}$

Graph each function. Compare the graph with the graph of $\boldsymbol{f}(\boldsymbol{x})=|\boldsymbol{x}|$.
a. $g(x)=|x-2|$

STEP 1 Make a table of values.

| $x$ | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $g(x)$ | 2 | 1 | 0 | 1 | 2 |

STEP 2 Graph the function.


STEP 3 Compare the graphs of $g$ and $f$. The graph of $g(x)=|x-2|$ is 2 units to the right of the graph of $f(x)=|x|$.
b. $g(x)=|x|-1$

STEP 1 Make a table of values.

| $x$ | -2 | -1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $g(x)$ | 1 | 0 | -1 | 0 | 1 |

STEP 2 Graph the function.


STEP 3 Compare the graphs of $g$ and $f$. The graph of $g(x)=|x|-1$ is 1 unit below the graph of $f(x)=|x|$.

Graph each function. Compare the graph with the graph of $f(x)=|x|$.
a. $g(x)=4|x|$
b. $g(x)=-0.5|x|$

STEP 1 Make a table of values.

| $x$ | -2 | -1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $g(x)$ | 8 | 4 | 0 | 4 | 8 |

STEP 2 Graph the function.


STEP 3 Compare the graphs of $g$ and $f$. The graph of $g(x)=4|x|$ opens up and is narrower than the graph of $f(x)=|x|$.

STEP 1 Make a table of values.

| $x$ | -4 | -2 | 0 | 2 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $g(x)$ | -2 | -1 | 0 | -1 | -2 |

STEP 2 Graph the function.


STEP 3 Compare the graphs of $g$ and $f$. The graph of $g(x)=-0.5|x|$ opens down and is wider than the graph of $f(x)=|x|$.

## KEY CONCEPT

## For Your Notebook

Comparing Graphs of Absolute Value Functions with the Graph of $f(x)=|x|$
$\boldsymbol{g}(\boldsymbol{x})=|\boldsymbol{x}-\boldsymbol{h}|$
If $h>0$, the graph of $g$ is $|h|$ units to the right of the graph of $f(x)=|x|$.

If $h<0$, the graph of $g$ is $|h|$ units to the left of the graph of $f(x)=|x|$.
$\boldsymbol{g}(\boldsymbol{x})=|\boldsymbol{x}|+\boldsymbol{k}$
If $k>0$, the graph of $g$ is $|k|$ units above the graph of $f(x)=|x|$.

If $k<0$, the graph of $g$ is $|k|$ units below the graph of $f(x)=|x|$.
$\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{a}|\boldsymbol{x}|$
If $|a|>1$, the graph of $g$ is narrower than the graph of $f(x)=|x|$. If $0<|a|<1$, the graph of $g$ is wider.
If $a>0$, the graph of $g$ opens up. If $a<0$, the graph opens down.

## PrACTICE

EXAMPLES
1 and 2
for Exs. 1-6

Graph the function. Compare the graph with the graph of $\boldsymbol{f}(\boldsymbol{x})=|\boldsymbol{x}|$.

1. $g(x)=|x+3|$
2. $g(x)=|x|+5$
3. $g(x)=|x|-7$
4. $g(x)=2|x|$
5. $g(x)=0.6|x|$
6. $g(x)=-3|x|$
7. For the absolute value function $g(x)=-|x|+1$, identify the function's domain and range, the vertex of the function's graph, and the function's minimum or maximum value.
