\qquad

LESSON
 5.6
 Investigating Algebra Activity:
 Absolute Value Inequalities
 For use before the lesson "Solve Absolute Value Inequalities"

Materials: paper and pencil

QUESTION How can you use a number line to solve absolute-value inequalities?

You can solve an absolute-value inequality of the form $|x|<c$ by finding all points on the number line whose distance from zero is less than c.
For example, the inequality $|x|<4$ means x is less than 4 units from zero. As shown below, the numbers between -4 and 4 are less than 4 units from zero. An open circle is used at -4 and 4 because the inequality symbol is $<$.

EXPLORE 1 Use a number line to graph $|\boldsymbol{x}-3|<2$

STEP 1 Interpret inequality
The inequality can be read as "The distance between x and 3 is less than 2 ."
STEP 2 Draw graph
On a number line, find the points whose distance from 3 is less than 2 . Use open circles because the inequality symbol is $<$.

EXPLORE 2 Use a number line to graph $|\boldsymbol{x}-\mathbf{3}| \geq 2$
STEP 1 Interpret inequality
The inequality can be read as "The distance between x and 3 is greater than or equal to 2 ."
STEP 2 Draw graph
On a number line, find the points whose distance from 3 is greater than or equal to 2 .
Use closed circles because the inequality symbol is \geq.

Use a number line to solve the absolute-value inequality.

1. $|x-2| \leq 3$
2. $|x-1|>5$
3. $|x-4| \geq 1$
4. $|x+3|<2$
5. $|x+2|>0$
6. $|x+1| \leq-6$

Algebra 1

