Date _

5.6 Investigating Algebra Activity: Absolute Value Inequalities

For use before the lesson "Solve Absolute Value Inequalities"

Materials: paper and pencil

QUESTION How can you use a number line to solve absolute-value inequalities?

You can solve an absolute-value inequality of the form |x| < c by finding all points on the number line whose distance from zero is less than *c*.

For example, the inequality |x| < 4 means x is less than 4 units from zero. As shown below, the numbers between -4 and 4 are less than 4 units from zero. An open circle is used at -4 and 4 because the inequality symbol is <.

EXPLORE 1 Use a number line to graph |x - 3| < 2

STEP 1 Interpret inequality

The inequality can be read as "The distance between *x* and 3 is less than 2."

STEP 2 Draw graph

On a number line, find the points whose distance from 3 is less than 2. Use open circles because the inequality symbol is <.

EXPLORE 2 Use a number line to graph $|x - 3| \ge 2$

STEP 1 Interpret inequality

The inequality can be read as "The distance between x and 3 is greater than or equal to 2."

STEP 2 Draw graph

On a number line, find the points whose distance from 3 is greater than or equal to 2. Use closed circles because the inequality symbol is \geq .

Use a number line to solve the absolute-value inequality.

1.	$ x-2 \le 3$	2.	x-1 > 5	3.	$ x-4 \ge 1$
4.	x+3 < 2	5.	x+2 > 0	6.	$ x+1 \leq -6$