\qquad

Margins of Error

Many measurements are not exact. Errors due to the measuring tool used or to rounding are called margins of error. Absolute value inequalities can be used to express the range of possible values.
If x represents the values acceptable within the margin of error of a given value, then the following absolute value inequality can be used to express the range of values:

$$
\mid x-\text { given value } \mid \leq \text { margin of error }
$$

EXAMPLE 1 Translate between measurement errors and absolute value inequalities

Write an absolute value inequality or describe the margin of error for the situation.
a. In a recent study, Camille found that 70% of students at her school play an after school sport. She determined the margin of error to be within 6%.
b. To the nearest foot, the length of Damien's desk is 5 feet.
c. At the supermarket, a watermelon's weight in pounds is given by $|x-14| \leq 3$.

Solution:

a. Since the range of values can be 6% more or 6% less than 70%, the absolute value inequality is $|x-70| \leq 6$.
b. Measurements to the nearest foot are at most 0.5 feet shorter or longer, so the absolute value inequality is $|x-5|<0.5$. Note that in this case, the inequality does not include the boundary values.
c. The weight of an average watermelon at the supermarket is within 3 pounds of 14 pounds, or between 11 pounds and 17 pounds. The margin of error is 3 pounds.

EXAMPLE 2 Determine margins of error

A gear on a machine part has a tolerance within 0.06 centimeters of 2.4 centimeters.
a. Write an absolute value inequality describing the margin of error for the tolerance of this gear.
b. Determine the tolerance range, in centimeters, for this gear.

Solution:

a. $|x-2.4| \leq 0.06$
b. First rewrite the absolute value inequality as a compound inequality:

$$
-0.06 \leq x-2.4 \leq 0.06
$$

Therefore, $2.34 \leq x \leq 2.46$ or the tolerance range is between 2.34 cm and 2.46 cm .

The range of values within a margin of error can be graphed on a number line, as shown in Example 3.
\qquad

EXAMPLE 3 Express margins of error on a number line
The number of bagels made each day at a bakery is within 24 of 360 . Using the margin of error, find the total number of bagels that can be made each day. Then graph this range on a number line.

Solution:

The margin of error is 24 . The absolute value inequality describing the range of values is $|x-360| \leq 24$ Rewrite the absolute value inequality as a compound inequality:

$$
-24 \leq x-360 \leq 24
$$

Therefore, $336 \leq x \leq 384$, so the range of bagels is between 336 and 384 .

Practice

Write the absolute value inequality describing the margin of error.

1. The length of a computer monitor, to the nearest inch, is 14 inches.
2. In a survey, the number of people favoring the development of a new shopping mall was within 4 percentage points of 28%.
3. In a game, points are awarded if a player's marker lands within 5 feet of a line 40 feet away.

Describe the margin of error shown by the absolute value inequality.

4. The starting salary in dollars of employees at a retail shop is given by
$|x-24,500| \leq 1500$.
5. The average tensile strength of a spring, in pounds, is given by $|x-35|<2.5$.
6. The precision of a measurement, in centimeters, is given by $|x-9.6|<0.05$.
7. The number of minutes it takes Malcolm to run a mile is given by $|x-7.75| \leq 0.25$.

Problem Solving

8. When mixing substances in the chemistry lab, Audrey's measurements can be off by no more than 10%. Describe the range of measures Audrey can make for 80 milliliters of a substance.
9. To the nearest 10 millimeters, the length of a square's side is 50 millimeters. Find the possible range in area A of this square. Graph this range on a number line.
10. In an experiment, Logan found that the equation $d=60-0.75 p$ describes the distance d, in feet, traveled by an object weighing p pounds when projected off a platform. The margin of error is within 8 feet. What is the expected distance an object weighing 20 pounds would travel? Graph this distance range on a number line.
