

Spreadsheet Activity: Linear Inequalities in Two Variables

For use before the lesson "Graph Linear Inequalities in Two Variables"

QUESTION

How can you use a spreadsheet to tell whether an ordered pair is a solution of a linear inequality in two variables?

A linear inequality in two variables, such as $y - 2x \le -5$, is the result of replacing = in a linear equation with <, \le , >, or \ge . A solution of an inequality in two variables x and y is an ordered pair (x, y) that produces a true statement when the values of x and y are substituted into the inequality.

EXAMPLE

Use a spreadsheet to tell whether an ordered pair is a solution of an inequality

Use a spreadsheet to tell whether each ordered pair is a solution of the inequality $y - 2x \le -5$.

$$(5, -2)$$

$$(-1, -7)$$

STEP 1 Enter data and formulas. Label columns *x*-coordinates, *y*-coordinates, and solution of inequality. Enter the *x*-coordinates in column A. Enter the *y*-coordinates in column B. Then enter the formula to tell whether the ordered pair is a solution of the inequality $y - 2x \le -5$.

	Data			
	Α	В	С	
1	<i>x</i> -coordinates	<i>y</i> -coordinates	Solution of inequality	
2	0	0	=B2-2*A2<=-5	
3	5	-2	=B3-2*A3<=-5	
4	9	3	=B4-2*A4<=-5	
5	-1	-7	=B5-2*A5<=-5	

STEP 2 From column C, you can conclude that (0, 0) is *not* a solution of $y - 2x \le -5$. The ordered pairs (5, -2), (9, 3), and (-1, -7) are solutions of $y - 2x \le -5$.

	Data			
	Α	В	С	
1	<i>x</i> -coordinates	<i>y</i> -coordinates	Solution of inequality	
2	0	0	False	
3	5	-2	True	
4	9	3	True	
5	-1	-7	True	

PRACTICE

Use a spreadsheet to tell whether each ordered pair is a solution of the inequality.

1.
$$y - x < 4$$
; $(-1, 5)$, $(-3, 8)$, $(2, 3)$, $(-7, -10)$

2.
$$2x + y \ge -3$$
; $(-8, 5)$, $(9, -2)$, $(12, 4)$, $(-1, -6)$

3.
$$2y + 5x > 7$$
; $(12, -5)$, $(3, 11)$, $(-7, -4)$, $(-3, 2)$

4.
$$-y + 4x \le -2$$
; $(-2, -8)$, $(-7, 4)$, $(-1, 15)$, $(4, 12)$

LESSON 5.7

Spreadsheet Activity: Linear Inequalities in Two Variables *continued*

For use before the lesson "Graph Linear Inequalities in Two Variables"

EXCEL

Select cell A1.

x-coordinates TAB y-coordinates TAB Solution of inequality ENTER

Select cell A2.

$$0$$
 ENTER 9 ENTER -1 ENTER

Select cell B2.

$$0$$
 ENTER -2 ENTER 3 ENTER -7 ENTER

Select cell C2.

$$= B2 - 2*A2 <= -5$$
 ENTER

Select cell C2. From the **Edit** menu, choose **Copy.**

Select cells C3-C5. From the **Edit** menu, choose **Paste**.