Practice C

For use with the lesson "Use Combinations and the Binomial Theorem"
Find the number of combinations.

1. ${ }_{8} C_{2}$
2. ${ }_{6} C_{6}$
3. ${ }_{12} C_{9}$
4. ${ }_{13} C_{1}$

Find the number of possible 5-card hands that contain the cards specified. The cards are taken from a standard 52-card deck.
5. 4 queens and 1 king
6. 3 of one kind (kings, queens, and so on) and 2 of a different kind
7. 2 of a kind, 2 of a second kind, and 1 other card
8. 3 face cards (kings, queens, or jacks) and 2 other cards (none of which are face cards) all 5 of the same suit

Use the binomial theorem to write the binomial expansion.

9. $(2 x-1)^{5}$
10. $\left(2 x-y^{2}\right)^{4}$
11. $\left(4 x+y^{3}\right)^{4}$
12. $\left(x^{3}+y\right)^{7}$
13. Find the coefficient of $x^{6} y^{4}$ in the expansion of $(4 x-3 y)^{10}$.
14. Find the coefficient of $x^{5} y^{14}$ in the expansion of $\left(2 x+5 y^{2}\right)^{12}$.

Decide whether the problem requires combinations or permutations to find the answer. Then solve the problem.

15. Eight members of a school marching band are auditioning for 3 majorette positions. In how many ways can students be chosen to be majorettes?
16. Thirty five students are running in a 5-kilometer race. In how many ways can the runners finish in first, second, and third place?

Verify the identity. Justify your steps.

17. ${ }_{n} C_{n-1}=n$
18. ${ }_{m} C_{m}-{ }_{n} C_{n}=0$
19. ${ }_{n+1} C_{n-1}=\frac{n(n+1)}{2}$
20. Committees A committee of four people is to be chosen from a group of 25 people.
a. Fifteen members of the group are women. In how many different ways can you make a committee of 2 women and 2 men?
b. Fifteen members of the group are women. In how many different ways can you make a committee of 2 or more women?
21. Ice Cream Sundaes An ice cream parlor has a choice of 12 different toppings. You can make your own sundae by choosing 1 or more toppings. You can afford at most four toppings. How many different types of ice cream sundaes can you order?
