Name

Date

Study Guide

For use with the lesson "Use Combinations and the Binomial Theorem"

GOAL Use combinations and the binomial theorem.

Vocabulary

A combination is a selection of r objects taken from a group of n distinct objects where the order is not important.

If you arrange the values of ${}_{n}C_{r}$ in a triangular pattern in which each row corresponds to a value of *n*, you obtain **Pascal's triangle.**

The **Binomial Theorem** states that for any positive integer *n*, the binomial expansions of $(a + b)^n$ is

 $(a+b)^{n} = {}_{n}C_{0}a^{n}b^{0} + {}_{n}C_{1}a^{n-1}b^{1} + {}_{n}C_{2}a^{n-2}b^{2} + \cdots + {}_{n}C_{n}a^{0}b^{n}$

where each term in the expansion of $(a + b)^n$ has the form ${}_nC_ra^{n-r}b^r$ where *r* is an integer from 0 to *n*.

EXAMPLE 1 Find combinations

Committee Members The board of directors of an organization has 7 members. In how many ways can the board choose a committee of 3 board members?

Solution

Because order is not important, the number of ways to choose a committee of 3 board members from the board is:

$$_{7}C_{3} = \frac{7!}{4! \cdot 3!} = \frac{7 \cdot 6 \cdot 5 \cdot 4!}{4! \cdot 3 \cdot 2 \cdot 1} = 35$$

A committee of 3 board members can be chosen in 35 ways.

EXAMPLE2 Decide to multiply or add

Sporting Events Your school has scheduled three rugby games, four football games, and two soccer games.

- **a.** In how many ways can you go to two rugby games and one other game?
- **b.** In how many ways can you go to at least three of the four football games?

Solution

a. You can choose 2 of 3 rugby games and 1 of the 6 other games. The number of possible choices is:

$$_{4}C_{2} \cdot _{6}C_{1} = \frac{4!}{2! \cdot 2!} \cdot \frac{6!}{5!} = \frac{4 \cdot 3 \cdot 2!}{2! \cdot 2 \cdot 1} \cdot \frac{6 \cdot 5!}{5!} = 6 \cdot 6 = 36$$

b. Of the four football games, you want to attend 3 games or 4 games, so you add the combinations. The number of combinations of games you can attend is:

$$_{A}C_{A} + _{A}C_{3} = 1 + 4 = 5$$

Date _

Name .

LESSON 6.1

For use with the lesson "Use Combinations and the Binomial Theorem"

Exercises for Examples 1 and 2

Find the number of combinations.

1. ${}_{6}C_{4}$ **2.** ${}_{10}C_{7}$ **3.** ${}_{9}C_{3}$ **4.** ${}_{13}C_{2}$

5. Rework Example 2 to find how many ways you can go to at least two of the four football games.

EXAMPLE3 Use Pascal's triangle

Committee Members Use Pascal's triangle to find the number of combinations of 3 committee members chosen from 8 available members.

Solution

To find ${}_{8}C_{3}$ write the 8th row of Pascal's triangle.

n = 7 (7th row)	1	7 2	21	35 3:	5 21	7	1	
n = 8 (8th row) 1	8	28	56	70	56	28	8	1
$_{8}C_{0}$	$_{8}C_{1}$	$_{8}C_{2}$	₈ C ₃	₈ C ₄	₈ C ₅	₈ C ₆	$_{8}C_{7}$	$_{8}C_{8}$
The value of ${}_{8}C_{3}$ is the 4th number in the 8th row of Pascal's triangle, so ${}_{8}C_{3} = 56$.								

There are 56 combinations of 3 committee members.

EXAMPLE4 Expand a power of a binomial difference

Use the binomial theorem to write the binomial expansion.

$$(z-3)^3 = [z + (-3)]^3$$

= ${}_3C_0z^3(-3)^0 + {}_3C_1z^2(-3)^1 + {}_3C_2z^1(-3)^2 + {}_3C_3z^0(-3)^3$
= $(1)(z^3)(1) + (3)(z^2)(-3) + (3)(z)(9) + (1)(1)(-27)$
= $z^3 - 9z^2 + 27z - 27$

EXAMPLES Find a coefficient in an expansion

Find the coefficient of x^3 in the expansion of $(4x + 3)^5$.

Each term in the expansion has the form ${}_{5}C_{r}(4x)^{5-r}(3)^{r}$. The term containing x^{3} occurs when r = 2:

$$_{5}C_{2}(4x)^{3}(3)^{2} = (10)(64x^{3})(9) = 5760x^{3}$$

The coefficient of x^3 is 5760.

Exercises for Examples 3, 4, and 5

- 6. Rework Example 3 choosing 4 committee members.
- 7. Use the binomial theorem to expand the expression $(x^3 + 2)^4$.
- **8.** Find the coefficient of the x^2 -term in Example 5.

LESSON 6.1