\qquad

LESSON Study Guide
6.2

GOAL Study probability distributions.

Vocabulary

A random variable is a variable whose value is determined by the outcomes of a random event.

A probability distribution is a function that gives the probability of each possible value of a random variable.

A binomial distribution shows the probabilities of the outcomes of a binomial experiment.

A binomial experiment has n independent trials, has only two outcomes (success or failure) for each trial, and the probability for success is the same for each trial.

A probability distribution is symmetric if a vertical line can be drawn to divide the histogram into two parts that are mirror images.

A distribution that is not symmetric is called skewed.

EXAMPLE 1 Construct a probability distribution

Let X be a random variable that represents the number of questions that students answered correctly on a quiz with three questions. Make a table and a histogram showing the probability distribution for \boldsymbol{X}.

The possible values of X are the integers $0,1,2$, and 3 . The table shows the number of possible outcomes and $P(X)$.

\boldsymbol{X} (number of correct)	0	1	2	3
Outcomes	1	3	3	1
$\boldsymbol{P}(\boldsymbol{X})$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

EXAMPLE 2 Interpret a probability distribution

Use the probability distribution in Example 1 to find the probability that a student answers at least two questions correctly.

The probability that a student answers at least two questions correctly is:

$$
\begin{aligned}
P(X \geq 2) & =P(X=2)+P(X=3) \\
& =\frac{3}{8}+\frac{1}{8}=\frac{4}{8}=\frac{1}{2}=0.5
\end{aligned}
$$

\qquad
\qquad

Exercises for Examples 1 and 2

1. Use the data to construct a probability distribution table and a histogram showing the probability distribution for X, a random variable that represents the number of cell phones per household.

\boldsymbol{X} (number of cell phones)	0	1	2	3
Number of households	19	28	37	16

2. What is the probability that a household has at least two cell phones?

EXAMPLE 3 Construct a binomial distribution

A binomial experiment consists of $\boldsymbol{n}=\mathbf{3}$ trials with probability 0.4 of success on each trial. Draw a histogram of the binomial distribution that shows the probability of exactly k successes.
$P(k=0)={ }_{3} C_{0}(0.4)^{0}(0.6)^{3}=0.216$
$P(k=1)={ }_{3} C_{1}(0.4)^{1}(0.6)^{2}=0.432$
$P(k=2)={ }_{3} C_{2}(0.4)^{2}(0.6)^{1}=0.288$

$P(k=3)={ }_{3} C_{3}(0.4)^{3}(0.6)^{0}=0.064$

EXAMPLE 4 Interpret and classify a binomial distribution

a. What is the least likely outcome for the binomial distribution in Example 3?
b. What is the probability when $k=1$ in Example 3?
c. Describe the shape of the binomial distribution in Example 3.

Solution

a. The least likely outcome is the value of k for which $P(k)$ is smallest. This probability is smallest for $k=3$.
b. The probability when $k=1$ is 0.432 .
c. The distribution is skewed because it is not symmetric about any vertical line.

Exercises for Examples 3 and 4

In Exercises 3-5 use the following information. A binomial experiment consists of $\boldsymbol{n}=\mathbf{4}$ trials with probability 0.1 of success on each trial.

3. Construct a binomial distribution that shows the probability of exactly k successes and draw a histogram of the distribution.
4. Find the most likely outcome.
5. Describe the shape of the binomial distribution.
