CHAPTER
 More on Probability Distributions

A probability distribution is a function that gives the probability of each possible value of a random variable. The sum of all the probabilities in a probability distribution is equal to 1 .

EXAMPLE1 Find a uniform distribution

A bag contains five toys. As a reward, a child is allowed to reach in the bag and blindly select a toy. Find the probability distribution of this situation.

Solution:

There is a $\frac{1}{5}=0.2$ probability of selecting each toy from the bag. The table shows the probability distribution. The function $\operatorname{Toy}(X)$ gives the probability of selecting $\operatorname{Toy}(X)$, where X ranges from 1 to 5 .

$\operatorname{Toy}(\boldsymbol{X})$	$\operatorname{Toy}(1)$	$\operatorname{Toy}(2)$	$\operatorname{Toy}(3)$	$\operatorname{Toy}(4)$	$\operatorname{Toy}(5)$
Probability	0.2	0.2	0.2	0.2	0.2

Notice that the sum of all the probabilities is equal to 1 .
A relative-frequency histogram is a graph that shows the probability distribution. If the width of each bar in a relative-frequency histogram is assumed to be equal to 1 , then the area of each bar, and the area of the entire histogram, is easily calculated.

Find the area of a uniform relative-frequency distribution

Find the area of the probability distribution from Example 1.

Solution:

We can construct a relative-frequency histogram as shown below.

The area of each bar of this histogram is 0.2 (base times height), and because there are a total of 5 bars, the total area of the histogram is equal to 1 .
In the next few examples, we will calculate the areas of binomial distributions. Recall that binomial distributions are constructed from binomial experiments.

Find a probability distribution and its area

Alicia plays on the soccer team. Based on the team's record, it has been determined that there is a 0.6 probability of winning a game. What is the probability distribution for the next two games?
\qquad

${ }_{6}^{\text {chaprer }}$ More on Probability Distributions continued $^{\text {chen }}$

Solution:

Losing both games:
$P(0$ out of 2$)=\frac{2!}{0!(2-0)!} \cdot(0.6)^{0}(0.4)^{2}=0.16$
Winning one of the next two games:
$P(1$ out of 2$)=\frac{2!}{1!(2-1)!} \cdot(0.6)^{1}(0.4)^{1}=0.48$
Winning both games:
$P(2$ out of 2$)=\frac{2!}{2!(2-2)!} \cdot(0.6)^{2}(0.4)^{0}=0.36$
The probability distribution is shown in the table below.

Number of Wins (\boldsymbol{X})	0	1	2
Probability	0.16	0.48	0.36

Construct a histogram of the binomial distribution.

Using a bar width of 1 , we can calculate the total area of the distribution.
Total area $=1(0.16)+1(0.48)+1(0.36)=1$
The total area of the distribution is equal to 1 .

EXAMPLE 4 Find a probability distribution and its area

Let X be a random variable that represents the number of tails in a three-coin toss. Find the probability distribution and its area.

Solution:

No tails:
$P(0$ out of 3$)=\frac{3!}{0!(3-0)!} \cdot(0.5)^{0}(0.5)^{3}=0.125$
One tail:
$P(1$ out of 3$)=\frac{3!}{1!(3-1)!} \cdot(0.5)^{1}(0.5)^{2}=0.375$
Two tails:
$P(2$ out of 3$)=\frac{3!}{2!(3-2)!} \cdot(0.5)^{2}(0.5)^{1}=0.375$
Three tails:
$P(3$ out of 3$)=\frac{3!}{3!(3-3)!} \cdot(0.5)^{3}(0.5)^{0}=0.125$
\qquad

CHAPTER 6
 More on Probability Distributions continued

This distribution is shown in the table below.

Number of Tails (\boldsymbol{X})	0	1	2	3
Probability	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

Construct a histogram of the binomial distribution.

If we take the width of each bar in the distribution to be 1 , we can calculate the sum of the areas of the bars as follows:
Total area $=1 \cdot \frac{1}{8}+1 \cdot \frac{3}{8}+1 \cdot \frac{3}{8}+1 \cdot \frac{1}{8}=1$
The total area of the binomial distribution is equal to 1 .
We have now seen several examples of binomial probability distributions. On each example, the sum of the probabilities and the area of the related histogram is 1 . We can extend this idea to any size binomial experiment.

KEY CONCEPT
For a binomial experiment of n trials,
$\sum_{k=0}^{n} P(k$ successes $)=1$

EXAMPLE 5 Calculate probabilities

Consider the binomial distribution from Example 4. What is the probability of obtaining fewer than three 3 tails in a three-coin toss?

Solution:

This can be written as follows:

$$
\begin{aligned}
P(X<3) & =P(X=0)+P(X=1)+P(X=2) \\
& =\frac{1}{8}+\frac{3}{8}+\frac{3}{8} \\
& =\frac{7}{8}
\end{aligned}
$$

Algebra 2

Pre-AP
\qquad

Notice that if we subtract this result from 1 (the area of the histogram), we obtain exactly the same result as $P(X=3)$.
$P(X=3)=1-P(X<3)=1-\frac{7}{8}=\frac{1}{8}$

Practice

1. Kenneth is one of the leading players on the basketball team. During a game, he typically makes 3 out of every 5 basket attempts.
a. The table below shows the probability distribution for the next 4 basket attempts. Complete the table.

Number of Baskets (X)	0	1	2	3	4
Probability					

b. Construct a histogram of the binomial distribution.
c. Verify that the total area of the histogram is equal to 1 .
d. Compute $P(X>3)$.
e. Use your answer from part (d) to compute $P(X \leq 3)$.
2. Carla tosses a coin five times in a row.
a. The table below shows the probability distribution for the number of tails. Complete the table.

Number of Tails (\boldsymbol{X})	0	1	2	3	4	5
Probability						

b. Construct a histogram of the binomial distribution.
c. Verify that the total area of the histogram is equal to 1 .
d. Compute $P(X<2)$.
e. Use your answer from part (d) to compute $P(X \geq 2)$.

