\qquad
\qquad

LESSON
6.6

Practice C

For use with the lesson "Solve Systems of Linear Inequalities"
Tell whether the ordered pair is a solution of the system of inequalities.

1. $(0,1)$

2. $(0,-1)$

3. $(1,4)$

Match the system of inequalities with its graph.

4. $3 x+2 y \geq 4$
$y>4-x$
5. $3 x+2 y \geq-4$
$x+y<4$
6. $3 x-2 y \leq 4$
$x+y<4$
A.

B.

C.

Graph the system of inequalities.

7. $x \geq-2$
$y \leq 5$
8. $x<0$
$y>-1$

9. $x \geq 0, y \geq 0$
$2 x+y<3$
10. $\begin{aligned} x & >4, x<8 \\ y & \geq 2 x+1\end{aligned}$

11. $3 x+y<0$
$4 x-y \leq 1$

12. $y>-2, x \geq 0$
$y \geq 3 x$

Algebra 1

\qquad
${ }^{\text {LEsson }}$

Practice C
continued For use with the Iesson "Solve Systems of Linear Inequalities"

Write a system of inequalities for the shaded region.

13.

16.

14.

17.

15.

18.

20. School Play The tickets for a school play cost $\$ 8$ for adults and $\$ 5$ for students. The auditorium in which the play is being held can hold at most 525 people. The organizers of the school play must make at least $\$ 3000$ to cover the costs of the set construction, costumes, and programs.
a. Write a system of linear inequalities for the number of each type of ticket sold.
b. Graph the system of inequalities.

c. If the organizers sell out and sell twice as many student tickets as adult tickets, can they reach their goal? Explain how you got your answer.

