\qquad
lesson 6.6

Spreadsheet Activity: Solving Systems of Inequalities in Two Variables
 For use before the lesson "Solve Systems of Linear Inequalities"

QUESTION How can you use a spreadsheet to tell whether an ordered pair is a

 solution of a system of linear inequalities in two variables?A system of linear inequalities in two variables consists of two or more linear inequalities in the same variables. An example is shown.

$$
\begin{array}{ll}
x+1.5 y<7.5 & \text { Inequality } 1 \\
3 x-y \geq-4 & \text { Inequality } 2
\end{array}
$$

A solution of a system of inequalities is an ordered pair that is a solution of each inequality in the system.

EXAMPLE Use a spreadsheet to tell whether an ordered pair is a solution of a system of inequalities

Use a spreadsheet to tell whether each ordered pair is a solution of the system of inequalities: $(5,7),(-3.5,8),(-8,-0.5),(4,-3)$.

STEP 1 Enter coordinates and formulas. Label columns x-coordinates, y-coordinates, solution of inequality 1 , solution of inequality 2 , and solution of system. Enter the x-coordinates in column A. Enter the y-coordinates in column B. Then enter the formulas to tell whether the ordered pair is a solution of each inequality and the system.

-					
	A	B	C	D	E
1	x-coordinates	y-coordinates	Solution of Inequality 1	Solution of Inequality 2	Solution of system
2	5	7	$=\mathrm{A} 2+1.5 *$ B $2<7.5$	$=3^{*} \mathrm{~A} 2-\mathrm{B} 2>=-4$	= AND(C2, D2)
3	-3.5	8	$=A 3+1.5 * B 3<7.5$	$=3^{*} \mathrm{~A} 3-\mathrm{B} 3>=-4$	= AND(C3, D3)
4	-8	-0.5	$=A 4+1.5^{*}$ B $4<7.5$	$=3^{*} \mathrm{~A} 4-\mathrm{B} 4>=-4$	= AND(C4, D4)
5	4	-3	$=A 5+1.5 * B 5<7.5$	$=3^{*} A 5-B 5>=-4$	= AND(C5, D5)

STEP 2 From column E below, you can conclude that $(4,-3)$ is a solution of the system because it is a solution of each inequality in the system. The other ordered pairs are not solutions because they are not solutions of both of the inequalities.

\square					
	A	B	C	D	E
1	x-coordinates	y-coordinates	Solution of Inequality 1	Solution of Inequality 2	Solution of system
2	5	7	FALSE	TRUE	FALSE
3	-3.5	8	FALSE	FALSE	FALSE
4	-8	-0.5	TRUE	FALSE	FALSE
5	4	-3	TRUE	TRUE	TRUE

PRACTICE Use a spreadsheet to tell whether each ordered pair is a solution of the system of inequalities.

1. $x-y \geq-2.5$ $y>-x+7$ $(1.5,12),(-3,0),(7,5),(6,-9.5)$
2. $2.5 x-y \leq 5$
$y<-3.5 x$
$(-5,1.5),(0,10),(3,-7),(-4,5)$

Algebra 1

\qquad

LESSON 6.6

 Spreadsheet Activity: Solving Systems

 Spreadsheet Activity: Solving Systems of Inequalities in Two Variables of Inequalities in Two Variables

 continued

 continued

 For use before the lesson "Solve Systems of Linear Inequalities"

 For use before the lesson "Solve Systems of Linear Inequalities"}

EXCEL

Select cell A1.
x-coordinates TAB y-coordinates TAB Solution of Inequality 1 TAB Solution of
Inequality 2 TAB Solution of system ENTER
Select cell A2.
5 ENTER - 3.5 ENTER -8 ENTER 4 ENTER
Select cell B2.
7 ENTER 8 ENTER -0.5 ENTER -3 ENTER
Select cell C2.
$=\mathrm{A} 2+1.5 * \mathrm{~B} 2<7.5$ ENTER
Select cell C2. From the Edit menu, choose Copy.
Select cells C3-C5. From the Edit menu, choose Paste.
Select cell D2.
$=3 * \mathrm{~A} 2-\mathrm{B} 2>=-4$ ENTER
Select cell D2. From the Edit menu, choose Copy.
Select cells D3-D5. From the Edit menu, choose Paste.
Select cell E2.
$=\mathrm{AND}(\mathrm{C} 2, \mathrm{D} 2)$ ENTER
Select cell E2. From the Edit menu, choose Copy.
Select cells E3-E5. From the Edit menu, choose Paste.

