\qquad
\qquad

GOAL Solve systems of linear inequalities in two variables.

Vocabulary

A system of linear inequalities in two variables, or simply a system of inequalities, consists of two or more linear inequalities in the same variables.

A solution of a system of linear inequalities is an ordered pair that is a solution of each inequality in the system.

The graph of a system of linear inequalities is the graph of all solutions of the system.

EXAMPLE 1 Graph a system of two linear inequalities

Graph the system of inequalities.

$y<\frac{1}{2} x+2 \quad$ Inequality 1
$y \geq-2 x+5$ Inequality 2

Solution

Graph both inequalities in the same coordinate plane. The graph of the system is the intersection of the two half-planes, which is shown as the shaded region.

CHECK Choose a point in the shaded region, such as $(2,2)$. To check this solution, substitute 2 for x and 2 for y into each inequality.

Inequality 1
$y<\frac{1}{2} x+2$
$2 \stackrel{?}{<} \frac{1}{2}(2)+2$
$2<3$ ل

Inequality 2
$y \geq-2 x+5$
$2 \stackrel{?}{i}-2(2)+5$
$2 \geq 1$ ل

EXAMPLE 2 Graph a system of three linear inequalities

Graph the system of inequalities.

$y \leq 5 \quad$ Inequality 1
$x<4 \quad$ Inequality 2
$y \geq-2 x+2 \quad$ Inequality 3

Solution

Graph all three inequalities in the same coordinate plane. The graph of the system is the triangular region shown.

\qquad

Study Guide
continued
For use with the lesson "Solve Systems of Linear Inequalities"

Exercises for Examples 1 and 2

Graph the system of linear inequalities.

1. $y>3 x-2$
$y \leq \frac{2}{3} x+1$
2. $x>-2$
$y>-3$
$y \leq \frac{3}{4} x+2$
3. $y>2$
$y<8$
$y \geq 4 x-1$

EXAMPLE 3

Write a system of linear inequalities

Write a system of inequalities for the shaded region.

Solution

Inequality 1 One boundary for the shaded region has a slope of -4 and a y-intercept of 5 . So, its equation is $y=-4 x+5$. Because the shaded region is below the solid line, the inequality is $y \leq-4 x+5$.

Inequality 2 Another boundary line for the shaded region has a slope of $\frac{3}{5}$ and a y-intercept of -2 . So, its equation is $y=\frac{3}{5} x-2$. Because the shaded region is above the dashed line, the inequality is $y>\frac{3}{5} x-2$.

The system of inequalities for the shaded region is:
Inequality 1

$$
y>\frac{3}{5} x-2 \quad \text { Inequality } 2
$$

Exercises for Example 3

Write a system of inequalities that defines the shaded region.
4.

5.

