@HomeTutor

my.hrw.com

- Multi-Language Glossary
- Vocabulary practice

 order of magnitude 	 exponential function 	 compound interest
• zero exponent	 exponential growth 	 exponential decay
 negative exponent 	 growth factor, growth rate 	 decay factor, decay rate

VOCABULARY EXERCISES

REVIEW KEY VOCABULARY

- **1.** Copy and complete: The function $y = 1200(0.3)^t$ is an exponential <u>?</u> function, and the base 0.3 is called the <u>?</u>.
- **2. WRITING** *Explain* how you can tell whether a table represents a linear function or an exponential function.

Tell whether the function represents exponential growth or exponential decay. *Explain*.

REVIEW EXAMPLES AND EXERCISES

Use the review examples and exercises below to check your understanding of the concepts you have learned in each lesson of this chapter.

7.1 Apply Exponent Properties Involving Products

EXAMPLE

Simplify $(3y^3)^4 \cdot y^5$. $(3y^3)^4 \cdot y^5 = 3^4 \cdot (y^3)^4 \cdot y^5$

 $= 81 \cdot y^{12} \cdot y^5$

Power of a product property Power of a power property Product of powers property

EXERCISES

EXAMPLES 1, 2, 3, 4, and 5 for Exs. 6–15 Simplify the expression.

 $= 81y^{17}$

6. $4^4 \cdot 4^3$	7. $(-3)^7(-3)$	8. $z^3 \cdot z^5 \cdot z^5$
9. $(y^4)^5$	10. $[(-7)^4]^4$	11. $[(b+2)^8]^3$
12. $(6^4 \cdot 31)^5$	13. $-(8xy)^2$	14. $(2x^2)^4 \cdot x^5$

15. **EARTH SCIENCE** The order of magnitude of the mass of Earth's atmosphere is 10¹⁸ kilograms. The order of magnitude of the mass of Earth's oceans is 10³ times greater. What is the order of magnitude of the mass of Earth's oceans?

Apply Exponent Properties Involving Quotients

EXAMPLE

EXERCISES

Simplify the expression.

 16. $\frac{(-3)^7}{(-3)^3}$ 17. $\frac{5^2 \cdot 5^4}{5^3}$ 18. $\left(\frac{m}{n}\right)^3$ 19. $\frac{17^{12}}{17^8}$

 20. $\left(-\frac{1}{x}\right)^4$ 21. $\left(\frac{7x^5}{y^2}\right)^2$ 22. $\frac{1}{p^2} \cdot p^6$ 23. $\frac{6}{7r^{10}} \cdot \left(\frac{r^5}{s}\right)^5$

24. **PER CAPITA INCOME** The order of magnitude of the population of Montana in 2003 was 10⁶ people. The order of magnitude of the total personal income (in dollars) for Montana in 2003 was 10¹⁰. What was the order of magnitude of the mean personal income in Montana in 2003?

7.3 Define and Use Zero and Negative Exponents

EXAMPLE

EXERCISES

Evaluate $(2x^0y^{-5})^3$. $(2x^0y^{-5})^3 = 2^3 \cdot x^0 \cdot y^{-15}$ Power of a power property $= 8 \cdot 1 \cdot y^{-15}$ Definition of zero exponent $= \frac{8}{y^{15}}$ Definition of negative exponents

EXAMPLES 1, 2, and 4 for Exs. 25–29

EXAMPLES 1, 2, and 3

for Exs. 16-24

Evaluate the expression. 25. 14^0 **26.** 3^{-4} **27.** $\left(\frac{2}{3}\right)^{-3}$ **28.** $7^{-5} \cdot 7^5$ **29. UNITS OF MEASURE** Use the fact that 1 femtogram = 10^{-18} kilogram and 1 nanogram = 10^{-12} kilogram to complete the following statement: 1 nanogram = ? femtogram(s).

30. $y = 6^x$

@HomeTutor

my.hrw.com

34. Graph the function $y = -5 \cdot 2^x$. Compare the graph with the graph of $y = 2^x$.

32. $\gamma = (3.5)^x$

31. $y = (1.1)^x$

7.5

Write and Graph Exponential Decay Functions

EXAMPLE 1

Tell whether the graph represents *exponential* growth or *exponential decay*. Then write a rule for the function.

The graph represents exponential decay ($y = ab^x$ where 0 < b < 1). The *y*-intercept is 2, so a = 2. Find the value of *b* by using the point (1, 0.5) and a = 2.

 $y = ab^x$ Write function.

 $0.5 = 2 \cdot b^1$ **Substitute.**

0.25 = b Solve for b.

A function rule is $y = 2(0.25)^x$.

EXAMPLE 2

CAR VALUE A family purchases a car for \$11,000. The car depreciates (loses value) at a rate of about 16% annually. Write a function that models the value of the car over time. Find the approximate value of the car in 4 years.

Let *V* represent the value (in dollars) of the car, and let *t* represent the time (in years since the car was purchased). The initial value is 11,000, and the decay rate is 0.16.

$V = \boldsymbol{a}(1-\boldsymbol{r})^t$	Write exponential decay model.
$=$ 11,000 $(1 - 0.16)^t$	Substitute 11,000 for <i>a</i> and 0.16 for <i>r</i> .
$= 11,000(0.84)^t$	Simplify.

To find the approximate value of the car in 4 years, substitute 4 for t.

 $V = 11,000(0.84)^{t} = 11,000(0.84)^{4} \approx 5477

The approximate value of the car in 4 years is \$5477.

EXERCISES

EXAMPLES

for Exs. 35-37

4 and 5

Tell whether the graph represents *exponential growth* or *exponential decay*. Then write a rule for the function.

37. CAR VALUE The value of a car is \$13,000. The car depreciates (loses value) at a rate of about 15% annually. Write an exponential decay model for the value of the car. Find the approximate value of the car in 4 years.

CHAPTER TEST

Simplify the expression. Write your answer using exponents.

1. $(62 \cdot 17)^4$	2. $(-3)(-3)^6$	3. $\frac{8^4 \cdot 8^5}{8^3}$	4. $(8^4)^3$
5. $\frac{2^{15}}{2^8}$	6. $5^3 \cdot 5^0 \cdot 5^5$	7. $[(-4)^3]^2$	8. $\frac{(-5)^{10}}{(-5)^3}$

Simplify the expression.

- **9.** $t^2 \cdot t^6$ **10.** $\left(\frac{s}{t}\right)^6$ **11.** $\frac{1}{9^{-2}}$ **12.** $-(6p)^2$
- **13.** $(5xy)^2$ **14.** $\frac{1}{z^7} \cdot z^9$ **15.** $(x^5)^3$ **16.** $\left(-\frac{4}{c}\right)^2$

Simplify the expression. Write your answer using only positive exponents.

17.
$$\left(\frac{a^{-3}}{3b}\right)^4$$
 18. $\frac{3}{4d} \cdot \frac{(2d)^4}{c^3}$ **19.** $y^0 \cdot (8x^6y^{-3})^{-2}$ **20.** $(5r^5)^3 \cdot r^{-2}$

21. Graph the function $y = 4^x$. Identify its domain and range.

- **22.** Graph the function $y = \frac{1}{2} \cdot 4^x$. Compare the graph with the graph of $y = 4^x$.
- **23. ANIMATION** About 10⁷ bytes of data make up a single frame of an animated film. There are about 10³ frames in 1 minute of a film. About how many bytes of data are there in 1 hour of an animated film?
- 24. **SALARY** A recent college graduate accepts a job at a law firm. The job has a salary of \$32,000 per year. The law firm guarantees an annual pay increase of 3% of the employee's salary.
 - **a.** Write a function that models the employee's salary over time. Assume that the employee receives only the guaranteed pay increase.
 - **b.** Use the function to find the employee's salary after 5 years.
- **25. SCIENCE** At sea level, Earth's atmosphere exerts a pressure of 1 atmosphere. Atmospheric pressure *P* (in atmospheres) decreases with altitude and can be modeled by $P = (0.99987)^a$ where *a* is the altitude (in meters).
 - a. Identify the initial amount, decay factor, and decay rate.
 - **b.** Use a graphing calculator to graph the function.
 - **c.** Estimate the altitude at which the atmospheric pressure is about half of what it is at sea level.