

Exploring Non-Integer Exponents with a Graphing Calculator

Some of the ways to evaluate non-integer exponents with a graphing calculator are explored here.

EXAMPLE 1

Evaluate exponents that are multiples of $\frac{1}{2}$ with a graphing calculator

Evaluate the expression with a graphing calculator.

a.
$$196^{1/2}$$

b.
$$4^{5/2}$$

Solution:

a. Use the $\sqrt{}$ command to evaluate $196^{1/2}$.

Enter these keystrokes: 2nd $\sqrt{}$ 196 ENTER

Display reads: 14

b. Another way to evaluate *any* fractional exponent is to use the **\tilde{\textsup}** command.

Enter these keystrokes: 4 🔼 🕻 5 🚼 2 🔘 ENTER

Display reads: 32

Notice what happens when parenthesis are *not* used to evaluate $4^{5/2}$.

Enter the keystrokes: 4 🔼 5 🚼 2 ENTER

Display reads: 512

This is not correct. By *not* using parentheses, the calculator evaluates $4^5 \div 2$.

Parentheses are used to tell the calculator to raise 4 to the $\frac{5}{2}$ po wer.

EXAMPLE 2

Evaluate exponents that are multiples of $\frac{1}{3}$ with a graphing calculator

Evaluate the expression with a graphing calculator.

a.
$$64^{1/3}$$

b.
$$125^{4/3}$$

c.
$$27^{-1/3}$$

Solution:

a. $64^{1/3}$ is the same as $\sqrt[3]{64}$. Use the $\sqrt[3]{}$ (command found in the MATH menu.

Use these keystrokes: $\boxed{\text{MATH}} \sqrt[3]{}$ (64 $\boxed{\text{ENTER}}$

Display reads: 4

IMAIH V (64 JENI

Display Teads. 4

b. $125^{4/3}$ is the same as $(\sqrt[3]{125})^4$.

Use these keystrokes: MATH $\sqrt[3]{}$ (125) $\boxed{}$ 4 ENTER

Display reads: 625

c. Use these keystrokes: $27 \boxed{(-1 \div 3)}$ ENTER

Displays reads: .3333333333 ■

CHAPTER 7

Exploring Non-Integer Exponents with a Graphing Calculator *continued*

EXAMPLES Evaluate other non-integer exponents with a graphing calculator

Evaluate the expression with a graphing calculator.

a.
$$81^{1/4}$$

b.
$$32^{3/5}$$

Solution:

a. $81^{1/4}$ is the same as $\sqrt[4]{81}$. Use the $\sqrt[x]{}$ command found in the MATH menu.

Use these keystrokes: 4 MATH
$$\sqrt[x]{81}$$
 ENTER

Display reads: 3

b. $32^{3/5}$ is the same as $(\sqrt[5]{32})^3$.

Use these keystrokes: 5 MATH
$$\sqrt[x]{32}$$
 3 ENTER

Display reads: 8 ■

When using the $\sqrt[x]{}$ function, notice the root is entered *before* the $\sqrt[x]{}$ function key.

EXAMPLE 4 Evaluate expressions containing multiple fractional exponents with a graphing calculator

Evaluate $8^{-5/3} \cdot \frac{64^{3/2}}{512^{-1/3}}$ with a graphing calculator.

Solution:

Use these keystrokes: $8 \times (6 \times 5 \div 3) \times 64 \times (3 \div 2) \div 512$

Display reads: 128 ■

Practice

Evaluate the expression using a graphing calculator.

2.
$$1024^{2/5}$$

3.
$$(243^{-9/10})^{2/3}$$

4.
$$(27^{4/3})(81^{-1/4})$$

$$\mathbf{5.} \quad \frac{16^{3/4}}{(512^{-1/3})^{4/4}}$$

6.
$$\frac{256^{5/8}}{8^{-5/3}} \cdot 64^{-2/3}$$

Find two sets of keystrokes that can be used to evaluate the expression with a graphing calculator. Then evaluate the expression.

8.
$$343^{-1/3}$$

10.
$$(8^{2/3})(16)^{3/4}$$

11.
$$\frac{36^{1/2}}{(8^{2/3})^{1/2}}$$

12.
$$125^{2/3} \cdot \frac{225^{-1/2}}{9^{3/2}}$$