Extension

Define and Use Fractional Exponents

GOAL Use fractional exponents.

Key Vocabulary

cube root

CC.9-12.N.RN.1 Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents.

You have learned to write the square root of a number using a radical sign. You can also write a square root of a number using exponents.

For any $a \ge 0$, suppose you want to write \sqrt{a} as a^k . Recall that a number b (in this case, a^k) is a square root of a number a provided $b^2 = a$. Use this definition to find a value for *k* as follows.

$$b^2 = a$$
 Definition of square root

$$(a^k)^2 = a$$
 Substitute a^k for b .

$$a^{2k} = a^1$$
 Power of a power property

Because the bases are the same in the equation $a^{2k} = a^1$, the exponents must be equal:

$$2k = 1$$
 Set exponents equal.

$$k = \frac{1}{2}$$
 Solve for k .

So, for a nonnegative number a, $\sqrt{a} = a^{1/2}$.

You can work with exponents of $\frac{1}{2}$ and multiples of $\frac{1}{2}$ just as you work with integer exponents.

EXAMPLE 1 Evaluate expressions involving square roots

a.
$$16^{1/2} = \sqrt{16}$$

$$= 4$$

b.
$$25^{-1/2} = \frac{1}{25^{1/2}}$$
$$= \frac{1}{\sqrt{25}}$$

$$\sqrt{2}$$

$$= \frac{1}{2}$$

c.
$$9^{5/2} = 9^{(1/2) \cdot 5}$$

$$= \left(\,9^{1/2}\right)^{\!5}$$

$$=(\sqrt{9})^5$$

$$=3^{5}$$

$$=\frac{1}{5}$$

d.
$$4^{-3/2} = 4^{(1/2) \cdot (-3)}$$

$$= \left(4^{1/2}\right)^{-3}$$
$$= \left(\sqrt{4}\right)^{-3}$$

$$=2^{-3}$$

$$=\frac{1}{2^3}$$

$$=\frac{1}{8}$$

FRACTIONAL EXPONENTS You can work with other fractional exponents just as you did with $\frac{1}{2}$.

CUBE ROOTS If $b^3 = a$, then b is the **cube root** of a. For example, $2^3 = 8$, so 2 is the cube root of 8. The cube root of \overline{a} can be written as $\sqrt[3]{a}$ or $a^{1/3}$.

EXAMPLE 2 Evaluate expressions involving cube roots

a.
$$27^{1/3} = \sqrt[3]{27}$$

= $\sqrt[3]{3^3}$
= 3

b.
$$8^{-1/3} = \frac{1}{8^{1/3}}$$

$$= \frac{1}{\sqrt[3]{8}}$$

$$= \frac{1}{2}$$

c.
$$64^{4/3} = 64^{(1/3) \cdot 4}$$

= $(64^{1/3})^4$
= $(\sqrt[3]{64})^4$
= 4^4
= 256

d.
$$125^{-2/3} = 125^{(1/3) \cdot (-2)}$$

 $= (125^{1/3})^{-2}$
 $= (\sqrt[3]{125})^{-2}$
 $= 5^{-2}$
 $= \frac{1}{5^2}$
 $= \frac{1}{25}$

PROPERTIES OF EXPONENTS The properties of exponents for integer exponents also apply to fractional exponents.

EXAMPLE 3 Use properties of exponents

a.
$$12^{-1/2} \cdot 12^{5/2} = 12^{(-1/2) + (5/2)}$$

= $12^{4/2}$
= 12^2
= 144

b.
$$\frac{6^{4/3} \cdot 6}{6^{1/3}} = \frac{6^{(4/3) + 1}}{6^{1/3}}$$
$$= \frac{6^{7/3}}{6^{1/3}}$$
$$= 6^{(7/3) - (1/3)}$$
$$= 6^{2}$$
$$= 36$$

PRACTICE

EXAMPLES for Exs. 1–12 1. 100^{3/2}

Evaluate the expression.

1.
$$100^{3/2}$$

2.
$$121^{-1/2}$$

3.
$$81^{-3/2}$$

4.
$$216^{2/3}$$

5.
$$27^{-1/3}$$

6.
$$343^{-2/3}$$

7.
$$9^{7/2} \cdot 9^{-3/2}$$

8.
$$\left(\frac{1}{16}\right)^{1/2} \left(\frac{1}{16}\right)^{-1/2}$$

8.
$$\left(\frac{1}{16}\right)^{1/2} \left(\frac{1}{16}\right)^{-1/2}$$
 9. $36^{5/2} \cdot \frac{36^{-1/2}}{(36^{-1})^{-7/2}}$

10.
$$(27^{-1/3})^3$$

11.
$$(-64)^{-5/3}(-64)^{4/3}$$

11.
$$(-64)^{-5/3}(-64)^{4/3}$$
 12. $(-8)^{1/3}(-8)^{-2/3}(-8)^{1/3}$

13. REASONING Let x > 0. Compare the values of $x^{1/2}$ and $x^{-1/2}$. Give examples to support your thinking.