Name.

LESSON

Study Guide

For use with the lesson "Write and Graph Exponential Growth Functions"

GOAL Write and graph exponential growth models.

Vocabulary

An **exponential function** is a function of the form $y = ab^x$ where $a \neq 0, b > 0$, and $b \neq 1$.

When a > 0 and b > 1, the function $y = ab^x$ represents **exponential** growth.

Compound interest is interest earned on both an initial investment and on previously earned interest.

EXAMPLE1 Write a function rule

Write a rule for the function.

Solution

STEP 1 Tell whether the function is exponential. Here, the *y*-values are multiplied by 5 for each increase of 1 in *x*, so the table represents an exponential function of the form $y = a \cdot b^x$ where b = 5.

STEP 2 Find the value of *a* by finding the value of *y* when x = 0. When x = 0, $y = ab^0 = a \cdot 1 = a$. The value of *y* when x = 0 is 10, so a = 10.

STEP 3 Write the function rule. A rule for the function is $y = 10 \cdot 5^x$.

EXAMPLE2 Graph an exponential function

STEP 2 Plot the points.

Graph the function $y = 5 \cdot 3^{x}$. Identify its domain and range.

Solution

STEP 1 Make a table by choosing a few values for *x* and finding the values of *y*. The domain is all real numbers.

STEP 3 Draw a smooth curve through the points.

From either the table or the graph, you can

see that the range is all positive real numbers.

x	-2	-1	0	1	2
y	$\frac{5}{9}$	$\frac{5}{3}$	5	15	45

Date .

Name

Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved.

7.4

Date _

____ For use with the lesson "Write and Graph Exponential Growth Functions"

EXAMPLE3 Compare graphs of exponential functions

Graph $y = -\frac{1}{2} \cdot 4^x$ and $y = 2 \cdot 4^x$. Compare each graph with the graph of $y = 4^x$.

Solution

To graph each function, make a table of values, plot the points, and draw a smooth curve through the points.

x	$y = 4^x$	$y = -\frac{1}{2} \cdot 4^x$	$y = 2 \cdot 4^x$	
-2	$\frac{1}{16}$	$-\frac{1}{32}$	$\frac{1}{8}$	
-1	$\frac{1}{4}$	$-\frac{1}{8}$	$\frac{1}{2}$	
0	1	$-\frac{1}{2}$	2	
1	4	-2	8	
2	16	-8	32	

Because the *y*-values for $y = -\frac{1}{2} \cdot 4^x$ are $-\frac{1}{2}$ times the corresponding *y*-values for $y = 4^x$, the graph of $y = -\frac{1}{2} \cdot 4^x$ is a vertical shrink and a reflection in the *x*-axis of the graph of $y = 4^x$.

Because the *y*-values for $y = 2 \cdot 4^x$ are 2 times the corresponding *y*-values for $y = 4^x$, the graph of $y = 2 \cdot 4^x$ is a vertical stretch of the graph of $y = 4^x$.

Exercises for Examples 1, 2, and 3

1. Write a rule for the function.

x	-2	-1	0	1	2
Y	1	3	9	27	81

- **2.** Graph $y = 4 \cdot 3^x$ and identify its domain and range.
- **3.** Graph $y = -5 \cdot 6^x$. Compare the graph with the graph of $y = 6^x$.