\qquad

LESSON

Study Guide

For use with the lesson "Write and Graph Exponential Growth Functions"
GOAL Write and graph exponential growth models.

Vocabulary

An exponential function is a function of the form $y=a b^{x}$ where $a \neq 0, b>0$, and $b \neq 1$.

When $a>0$ and $b>1$, the function $y=a b^{x}$ represents exponential growth.

Compound interest is interest earned on both an initial investment and on previously earned interest.

EXAMPLE 1 Write a function rule

Write a rule for the function.

Solution

STEP 1 Tell whether the function is exponential. Here, the y-values are multiplied by 5 for each increase of 1 in x, so the table represents an exponential function of the form $y=a \cdot b^{x}$ where $b=5$.

STEP 2 Find the value of a by finding the value of y when $x=0$. When $x=0$, $y=a b^{0}=a \cdot 1=a$. The value of y when $x=0$ is 10 , so $a=10$.

STEP 3 Write the function rule. A rule for the function is $y=10 \cdot 5^{x}$.

EXAMPLE 2 Graph an exponential function

Graph the function $\boldsymbol{y}=5 \cdot 3^{\boldsymbol{x}}$. Identify its domain and range.

Solution

STEP 1 Make a table by choosing a few values for x and finding the values of y. The domain is all real numbers.

x	-2	-1	0	1	2
\boldsymbol{y}	$\frac{5}{9}$	$\frac{5}{3}$	5	15	45

STEP 2 Plot the points.
STEP 3 Draw a smooth curve through the points. From either the table or the graph, you can see that the range is all positive real numbers.

Algebra 1

\qquad

Lesson
 7.4

 Study Guide continued For use with the lesson "Write and Graph Exponential Growth Functions"
EXAMPLE 3 Compare graphs of exponential functions

Graph $y=-\frac{1}{2} \cdot 4^{x}$ and $y=2 \cdot 4^{x}$. Compare each graph with the graph of
$y=4^{x}$.

Solution

To graph each function, make a table of values, plot the points, and draw a smooth curve through the points.

\boldsymbol{x}	$\boldsymbol{y}=\mathbf{4}^{\boldsymbol{x}}$	$\boldsymbol{y}=-\frac{\mathbf{1}}{\mathbf{2}} \cdot \mathbf{4}^{\boldsymbol{x}}$	$\boldsymbol{y}=\mathbf{2} \cdot \mathbf{4}^{\boldsymbol{x}}$
-2	$\frac{1}{16}$	$-\frac{1}{32}$	$\frac{1}{8}$
-1	$\frac{1}{4}$	$-\frac{1}{8}$	$\frac{1}{2}$
0	1	$-\frac{1}{2}$	2
1	4	-2	8
2	16	-8	32

Because the y-values for $y=-\frac{1}{2} \cdot 4^{x}$ are $-\frac{1}{2}$ times the corresponding y-values for $y=4^{x}$, the graph of $y=-\frac{1}{2} \cdot 4^{x}$ is a vertical shrink and a reflection in the x-axis of the graph of $y=4^{x}$.
Because the y-values for $y=2 \cdot 4^{x}$ are 2 times the corresponding y-values for $y=4^{x}$, the graph of $y=2 \cdot 4^{x}$ is a vertical stretch of the graph of $y=4^{x}$.

Exercises for Examples 1, 2, and 3

1. Write a rule for the function.

\boldsymbol{x}	-2	-1	0	1	2
\boldsymbol{y}	1	3	9	27	81

2. Graph $y=4 \cdot 3^{x}$ and identify its domain and range.
3. Graph $y=-5 \cdot 6^{x}$. Compare the graph with the graph of $y=6^{x}$.
