LESSON 7.5

Practice A

For use with the lesson "Write and Graph Exponential Decay Functions"

Tell whether the table represents an exponential function. If so, write a rule for the function.

1.

x	-2	-1	0	1	2
y	100	10	1	$\frac{1}{10}$	$\frac{1}{100}$

2.

X	-1	0	1	2	3
y	-5	-3	-1	1	3

Match the function with its graph.

3.
$$y = \left(\frac{1}{2}\right)^x$$

4.
$$y = 2^x$$

5.
$$y = -\left(\frac{1}{2}\right)^x$$

A.

В

C.

Graph the function and identify its domain and range.

6.
$$y = \left(\frac{1}{6}\right)^x$$

7.
$$y = \left(\frac{2}{5}\right)^x$$

8.
$$y = \left(\frac{3}{8}\right)^x$$

9.
$$y = (0.4)^x$$

10.
$$y = (0.7)^x$$

11.
$$y = (0.2)^x$$

LESSON 7.5

Practice A continued

For use with the lesson "Write and Graph Exponential Decay Functions"

Graph the function. Compare the graph with the graph of $y = \left(\frac{1}{3}\right)^x$.

12.
$$y = 2 \cdot \left(\frac{1}{3}\right)^x$$

13.
$$y = -\left(\frac{1}{3}\right)^x$$

14.
$$y = \frac{1}{3} \cdot \left(\frac{1}{3}\right)^x$$

Tell whether the graph represents exponential growth or exponential decay.

15.

16.

17.

18.

19.

20.

- **21.** Car Value You buy a used car for \$12,000. It depreciates at the rate of 15% per year. Find the value of the car after the given number of years.
 - **a.** 1 year
 - **b.** 3 years
 - **c.** 5 years
- **22. Declining Employment** A business had 4000 employees in 2000. Each year for the next 5 years, the number of employees decreased by 2%.
 - **a.** Write a function that models the number of employees over time.
 - **b.** Use the function to predict the number of employees in 2004. Round to the nearest whole number.