\qquad

CHAPTER 7

Average Rates of Change

KEY CONCEPT

Average Rate of Change

A function's average rate of change is the amount the function increases or decreases over an interval. For a linear function, slope is a measure of the average rate of change.

EXAMIPLE 1 Average rate of change in a linear function

Find and compare the average rates of change in each interval for the linear function $y=4 x$.
a. $0 \leq x \leq 1$
b. $1 \leq x \leq 2$
c. $0 \leq x \leq 2$

Solution:

	Interval	Endpoints	Average Rate of Change
a.	$0 \leq x \leq 1$	$(0,0)$ and $(1,4)$	$\frac{4-0}{1-0}=4$
b.	$1 \leq x \leq 2$	$(1,4)$ and $(2,8)$	$\frac{8-4}{2-1}=4$
c.	$0 \leq x \leq 2$	$(0,0)$ and $(2,8)$	$\frac{8-0}{2-0}=4$

The average rates of change are the same in each interval. Since the function is linear, the average rate of change is constant.

EXAMPLE 2 Average rate of change in an exponential function

Find and compare the average rates of change in each interval for the exponential function $y=4^{x}$.
a. $0 \leq x \leq 1$
b. $1 \leq x \leq 2$
c. $0 \leq x \leq 2$

Solution:

	Interval	Endpoints	Average Rate of Change
a.	$0 \leq x \leq 1$	$(0,1)$ and $(1,4)$	$\frac{4-1}{1-0}=3$
b.	$1 \leq x \leq 2$	$(1,4)$ and $(2,16)$	$\frac{16-4}{2-1}=12$
c.	$0 \leq x \leq 2$	$(0,1)$ and $(2,16)$	$\frac{16-1}{2-0}=\frac{15}{2}=7.5$

The average rates of change are all different. The average rate of change is not constant.

Since the slope of a linear function is constant; its average rate of change is the same over all intervals. For an exponential function; its average rate of change is not constant and depends on the interval.
\qquad

EXAMPLE 3 Average rates of change in other non-linear functions

Describe each function's average rate of change by finding the average rate of change over two intervals.
a. quadratic function: $y=x^{2}-3$
b. cubic function: $y=2 x^{3}+1$

Solution:

a. | Interval | Endpoints | Average Rate of Change |
| :---: | :---: | :---: |
| $0 \leq x \leq 1$ | $(0,-3)$ and $(1,-2)$ | $\frac{-2-(-3)}{1-0}=1$ |
| $1 \leq x \leq 2$ | $(1,-2)$ and $(2,1)$ | $\frac{1-(-2)}{2-1}=3$ |

The two average rates of change are different, so the average rate of change varies in a quadratic function.
b.

Interval	Endpoints	Average Rate of Change
$1 \leq x \leq 2$	$(1,3)$ and $(2,17)$	$\frac{17-3}{2-1}=14$
$2 \leq x \leq 3$	$(2,17)$ and $(3,55)$	$\frac{55-17}{3-2}=38$

The two average rates of change are different, so the average rate of change varies in a cubic function.

Practice

Describe the average rate of change of the function. Explain your reasoning.

1. $y=-2^{x}+2$
2. $y=\frac{x+1}{2}$
3. $y=x^{2}+x-6$
4. $y=\sqrt{x}$

Problem Solving

5. Write a function that has a constant rate of change. Explain how you know it has a constant rate of change.
6. Write a function that does not have a constant rate of change. Explain how you know the rate of change is not constant.
7. Find the average rate of change of the function $y=x^{3}$ over the intervals $-1 \leq x \leq 0,0 \leq x \leq 1$, and $-1 \leq x \leq 1$. Explain whether or not it can be concluded that the average rate of change is constant for this function.
8. The function below has a constant rate of change.

\boldsymbol{x}	2	4	6	8	\ldots
\boldsymbol{y}	-7	n	-1	2	\ldots

What is the value of n ?
9. A coin in Amber's collection increases in value 20% each year. Last year, the coin was worth $\$ 2.00$. What is the value of the coin this year? What is the expected value of the coin 5 years from now?

