\qquad

LESSON

8.1

Study Guide

For use with the lesson "Add and Subtract Polynomials"

GOAL Add and subtract polynomials.

Vocabulary

A monomial is a number, a variable, or the product of a number and one or more variables with whole number exponents.

The degree of a monomial is the sum of the exponents of the variables in the monomial.

A polynomial is a monomial or a sum of monomials, each called a term of the polynomial.

The degree of a polynomial is the greatest degree of its terms.
When a polynomial is written so that the exponents of a variable decrease from left to right, the coefficient of the first term is called the leading coefficient.
A polynomial with two terms is called a binomial.
A polynomial with three terms is called a trinomial.

EXAMPLE 1 Rewrite a polynomial

Write $12 x^{3}-15 x+13 x^{5}$ so that the exponents decrease from left to right. Identify the degree and the leading coefficient of the polynomial.

Solution

Consider the degree of each of the polynomial's terms.
Degree is 3 . Degree is 1 . Degree is 5 .

The polynomial can be rewritten as $13 x^{5}+12 x^{3}-15 x$. The greatest degree is 5 , so the degree of the polynomial is 5 , and the leading coefficient is 13 .

Exercises for Example 1

Write the polynomial so that the exponents decrease from left to right. Identify the degree and the leading coefficient of the polynomial.

1. $9-2 x^{2}$
2. $16+3 y^{3}+2 y$
3. $6 z^{3}+7 z^{2}-3 z^{5}$
\qquad

IEsson
 8.1

Study Guide
 continued

For use with the lesson "Add and Subtract Polynomials"

EXAMPLE 2 Add polynomials

Find the sum.

a. $\left(3 x^{4}-2 x^{3}+5 x^{2}\right)+\left(7 x^{2}+9 x^{3}-2 x\right)$
b. $\left(7 x^{2}-3 x+6\right)+\left(9 x^{2}+6 x-11\right)$

Solution

a. Vertical format: Align like terms in vertical columns.

$$
\begin{array}{r}
3 x^{4}-2 x^{3}+5 x^{2} \\
+\quad 9 x^{3}+7 x^{2}-2 x \\
\hline 3 x^{4}+7 x^{3}+12 x^{2}-2 x
\end{array}
$$

b. Horizontal format: Group like terms and simplify.

$$
\begin{aligned}
\left(7 x^{2}-3 x+6\right)+\left(9 x^{2}+6 x-11\right) & =\left(7 x^{2}+9 x^{2}\right)+(-3 x+6 x)+(6-11) \\
& =16 x^{2}+3 x-5
\end{aligned}
$$

EXAMPLE 3 Subtract polynomials

Find the difference.

a. $\left(3 x^{2}-9 x\right)-\left(2 x^{2}-5 x+6\right)$
b. $\left(11 x^{2}+6 x-1\right)-\left(2 x^{2}-7 x+5\right)$

Solution

a. Vertical format: Align like terms in vertical columns.

$$
\begin{aligned}
& 3 x^{2}-9 x \longrightarrow 3 x^{2}-9 x \\
& \xrightarrow[-\left(2 x^{2}-5 x+6\right)]{\frac{-2 x^{2}+5 x-6}{x^{2}-4 x-6}}
\end{aligned}
$$

b. Horizontal format: Group like terms and simplify.

$$
\begin{aligned}
\left(11 x^{2}+6 x-1\right)-\left(2 x^{2}-7 x+5\right) & =11 x^{2}+6 x-1-2 x^{2}+7 x-5 \\
& =\left(11 x^{2}-2 x^{2}\right)+(6 x+7 x)+(-1-5) \\
& =9 x^{2}+13 x-6
\end{aligned}
$$

Exercises for Examples 2 and 3

Find the sum or difference.
4. $\left(2 a^{2}+7\right)+\left(7 a^{2}+4 a-3\right)$
5. $\left(9 b^{2}-b+8\right)+\left(4 b^{2}-b-3\right)$
6. $\left(7 c^{3}-6 c+4\right)-\left(9 c^{3}-5 c^{2}-c\right)$
7. $\left(d^{2}-15 d+10\right)-\left(-12 d^{2}+8 d-1\right)$

