8.1

LESSON Study Guide

For use with the lesson "Add and Subtract Polynomials"

GOAL Add and subtract polynomials.

Vocabulary

A **monomial** is a number, a variable, or the product of a number and one or more variables with whole number exponents.

The **degree of a monomial** is the sum of the exponents of the variables in the monomial.

A **polynomial** is a monomial or a sum of monomials, each called a *term* of the polynomial.

The degree of a polynomial is the greatest degree of its terms.

When a polynomial is written so that the exponents of a variable decrease from left to right, the coefficient of the first term is called the **leading coefficient**.

A polynomial with two terms is called a binomial.

A polynomial with three terms is called a trinomial.

EXAMPLE 1 Rewrite a polynomial

Write $12x^3 - 15x + 13x^5$ so that the exponents decrease from left to right. Identify the degree and the leading coefficient of the polynomial.

Solution

Consider the degree of each of the polynomial's terms.

The polynomial can be rewritten as $13x^5 + 12x^3 - 15x$. The greatest degree is 5, so the degree of the polynomial is 5, and the leading coefficient is 13.

Exercises for Example 1

Write the polynomial so that the exponents decrease from left to right. Identify the degree and the leading coefficient of the polynomial.

1.
$$9 - 2x^2$$
 2. $16 + 3y^3 + 2y$ **3.** $6z^3 + 7z^2 - 3z^5$

Name .

Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved.

Date __

EXAMPLE 2 Add polynomials

Find the sum.

a.
$$(3x^4 - 2x^3 + 5x^2) + (7x^2 + 9x^3 - 2x)$$

b. $(7x^2 - 3x + 6) + (9x^2 + 6x - 11)$

Solution

a. Vertical format: Align like terms in vertical columns.

$$\frac{3x^4 - 2x^3 + 5x^2}{+ 9x^3 + 7x^2 - 2x} \\
\frac{3x^4 + 7x^3 + 12x^2 - 2x}{+ 12x^2 - 2x}$$

b. Horizontal format: Group like terms and simplify. $(7x^2 - 3x + 6) + (9x^2 + 6x - 11) = (7x^2 + 9x^2) + (-3x + 6x) + (6 - 11)$ $= 16x^2 + 3x - 5$

EXAMPLE3 Subtract polynomials

Find the difference.

a.
$$(3x^2 - 9x) - (2x^2 - 5x + 6)$$

b. $(11x^2 + 6x - 1) - (2x^2 - 7x + 5)$

Solution

a. Vertical format: Align like terms in vertical columns.

$$3x^{2} - 9x - (2x^{2} - 5x + 6) \xrightarrow{3x^{2} - 9x} - 2x^{2} + 5x - 6 - 6x^{2} - 4x - 6$$

b. Horizontal format: Group like terms and simplify. $(11x^2 + 6x - 1) - (2x^2 - 7x + 5) = 11x^2 + 6x - 1 - 2x^2 + 7x - 5$ $= (11x^2 - 2x^2) + (6x + 7x) + (-1 - 5)$ $= 9x^2 + 13x - 6$

Exercises for Examples 2 and 3

Find the sum or difference.

4. $(2a^2 + 7) + (7a^2 + 4a - 3)$

5.
$$(9b^2 - b + 8) + (4b^2 - b - 3)$$

6.
$$(7c^3 - 6c + 4) - (9c^3 - 5c^2 - c)$$

7. $(d^2 - 15d + 10) - (-12d^2 + 8d - 1)$