\qquad

LESSON

Challenge Practice

In Exercises 1-5, find the product and simplify.

1. $\left(x^{3}+2 x\right)\left(x^{4}+x^{2}\right)$
2. $\left(3 y-y^{3}\right)\left(y^{4}+y\right)$
3. $\left(2 x^{3}+2 y\right)\left(x^{4}+2 y^{3}\right)$
4. $x^{3}\left(x^{5}+4 x^{3}\right)\left(2 x^{4}+3 x^{2}\right)$
5. $\left(x^{2}+1\right)(x+2)\left(x^{2}+2\right)$

In Exercises 6-10, simplify the expression and write the result as a polynomial in standard form.

6. $x\left(x^{2}+2 x\right)-x^{2}(x+2)$
7. $(x+1)(x+1)-(x-1)(x-1)$
8. $\left(x^{2}+1\right)\left(x^{2}+1\right)-\left(x^{2}-1\right)\left(x^{2}-1\right)$
9. $\left(2 x^{2}+3 x-1\right)(x-1)-2 x(x+1)$
10. $(x+3)\left(2 x^{2}+2\right)+2(x+1)(x-2)+3$

In Exercises 11-13, use the following information.

A ship storage compartment is being designed to carry trailers, each of which has dimensions 50 feet long by 9 feet tall by 8 feet wide. It is decided that the storage container will have dimensions $50 x+150$ feet long by $9 x$ tall by $8 x+16$ feet wide.
11. Write an expression for the volume of the storage compartment in terms of x.
12. Simplify the expression found in Exercise 11 and write it as a polynomial in standard form.
13. If x is 4 , how many trailers will fit inside the storage compartment?

