8.2 Multiply Polynomials

Before	You added and subtracted polynomials.
Now	You will multiply polynomials.
Why?	So you can determine areas, as in Example 7.

Key Vocabulary

polynomial

binomial

REVIEW

PROPERTIES OF

You may want to

review using the

properties of exponents before multiplying polynomials.

EXPONENTS

The diagram shows that a rectangle with width x and length 2x + 3 has an area of $2x^2 + 3x$. You can also find this product by using the distributive property.

 $x(2x + 3) = x(2x) + x(3) = 2x^2 + 3x$

In this lesson, you will learn several methods for multiplying polynomials. Each method is based on the distributive property.

EXAMPLE 1 Multiply a monomial and a polynomial

Find the product $2x^3(x^3 + 3x^2 - 2x + 5)$.

 $2x^{3}(x^{3} + 3x^{2} - 2x + 5)$ = $2x^{3}(x^{3}) + 2x^{3}(3x^{2}) - 2x^{3}(2x) + 2x^{3}(5)$ = $2x^{6} + 6x^{5} - 4x^{4} + 10x^{3}$ Write product. Distributive property Product of powers property

Х

EXAMPLE 2 Multiply polynomials using a table

Find the product (x - 4)(3x + 2).

Solution

STEP 1 Write subtraction as addition in each polynomial.

(x - 4)(3x + 2) = [x + (-4)](3x + 2)

The product is $3x^2 + 2x - 12x - 8$, or $3x^2 - 10x - 8$.

 Guided Practice
 for Examples 1 and 2

 Find the product.
 $1. x(7x^2 + 4)$ 2. (a + 3)(2a + 1) 3. (4n - 1)(n + 5)

CC.9-12.A.APR.1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

2x + 3

х

x²

1 1 1

X

EXAMPLE 3 Multiply polynomials vertically

Find the product $(b^2 + 6b - 7)(3b - 4)$.

Solution

AVOID ERRORS

Remember that the terms of (3b - 4) are 3b and -4. They are *not* 3b and 4.

STEP 1 Multiply by -4.		STEP 2 Multiply by 3 <i>b</i> . b ² + 6 <i>b</i> - 7		STEP 3 Add products. $b^2 + 6b - 7$	
$b^2 + 6b - 7$					
×	3 <i>b</i> - 4	×	3 <i>b</i> - 4	×	3b - 4
$-4b^2 - 24b + 28$		$-4b^2 - 24b + 28$		-4b	$a^2 - 24b + 28$
		$3b^3 + 18b^2 - 21b$		$3b^3 + 18b^2 - 21b$	
				$3b^3 + 14b$	$a^2 - 45b + 28$

EXAMPLE 4 Multiply polynomials horizontally

Find the product $(2x^2 + 5x - 1)(4x - 3)$.				
$(2x^2 + 5x - 1)(4x - 3)$	Write product.			
$= 2x^2(4x-3) + 5x(4x-3) - 1(4x-3)$	Distributive property			
$= 8x^3 - 6x^2 + 20x^2 - 15x - 4x + 3$	Distributive property			
$= 8x^3 + 14x^2 - 19x + 3$	Combine like terms.			

FOIL PATTERN The letters of the word FOIL can help you to remember how to use the distributive property to multiply binomials. The letters should remind you of the words First, **O**uter, Inner, and Last.

First Outer Inner Last

$$(2x + 3)(4x + 1) = 8x^2 + 2x + 12x + 3$$

EXAMPLE 5 Multiply binomials using the FOIL pattern

Find the product (3a + 4)(a - 2). (3a + 4)(a - 2) = (3a)(a) + (3a)(-2) + (4)(a) + (4)(-2) Write products of terms. $= 3a^2 + (-6a) + 4a + (-8)$ Multiply. $= 3a^2 - 2a - 8$ Combine like terms.

GUIDED PRACTICE for Examples 3, 4, and 5

Find the product.

4. $(x^2 + 2x + 1)(x + 2)$ **5.** $(3y^2 - y + 5)(2y - 3)$ **6.** (4b - 5)(b - 2)

EXAMPLE 6 Standardized Test Practice

The dimensions of a rectangle are x + 3 and x + 2. Which expression represents the area of the rectangle?

ELIMINATE CHOICES

When you multiply x +3 and x + 2, the product will have a constant term of $3 \cdot 2 = 6$. So, you can eliminate choice D.

(A) $x^2 + 6$

(B) $x^2 + 5x + 6$ **(C)** $x^2 + 6x + 6$ **(D)** $x^2 + 6x$

Solution

Area = length \cdot width	Formula for area of a rectangle	
= (x+3)(x+2)	Substitute for length and width.	
$= x^2 + 2x + 3x + 6$	Multiply binomials.	
$= x^2 + 5x + 6$	Combine like terms.	

- The correct answer is B. (A) (B) (C) (D)
 - **CHECK** You can use a graph to check your answer. Use a graphing calculator to display the graphs of $y_1 = (x + 3)(x + 2)$ and $y_2 = x^2 + 5x + 6$ in the same viewing window. Because the graphs coincide, you know that the product of x + 3and x + 2 is $x^2 + 5x + 6$.

EXAMPLE 7 Solve a multi-step problem

SKATEBOARDING You are designing a rectangular skateboard park on a lot that is on the corner of a city block. The park will have a walkway along two sides. The dimensions of the lot and the walkway are shown in the diagram.

- Write a polynomial that represents the area of the skateboard park.
- What is the area of the park if the walkway is 3 feet wide?

Solution

STEP 1 Write a polynomial using the formula for the area of a rectangle. The length is 45 - x. The width is 33 - x.

> Area = length \cdot width = (45 - x)(33 - x) $= 1485 - 45x - 33x + x^2$

> > $= 1485 - 78x + x^2$

Formula for area of a rectangle Substitute for length and width. **Multiply binomials.** Combine like terms.

STEP 2 Substitute 3 for *x* and evaluate.

Area = $1485 - 78(3) + (3)^2 = 1260$

The area of the park is 1260 square feet.

7. The dimensions of a rectangle are x + 5 and x + 9. Which expression represents the area of the rectangle?

(A)
$$x^2 + 45x$$

(c) $x^2 + 14x + 45$

B $x^2 + 45$

(D)
$$x^2 + 45x + 45$$

- **a.** Write a polynomial that represents the combined area of the garden and the walkway.
- **b.** Find the combined area when the width of the walkway is 4 feet.

8.2 E	XERCISES	HOMEWORK KEY → = See WORKED-OUT SOLUTIONS Exs. 23 and 51 ★ = STANDARDIZED TEST PRACTICE Exs. 2, 26, 44, 52, and 53				
Sk	CILL PRACTICE					
	1. VOCABULARY Copy and complete: The FOIL pattern can be used to multiply any two _?					
	ord FOIL can help you					
EXAMPLE 1	MULTIPLYING POLYNOMIALS Find the product.					
for Exs. 3–8	3. $x(2x^2 - 3x + 9)$	4. $4y(-y^3 - 2y - 3)$	1) 5. $z^2(4z^4 + z^3 - 11z^2 - 6)$			
	6. $3c^3(8c^4 - c^2 - 3c + 5)$) 7. $-a^5(-9a^2+5a)$	8. $-5b^3(4b^5 - 2b^3 + b - 11)$			
EXAMPLE 2	USING TABLES Use a table to find the product.					
for Exs. 9–15	9. $(x+2)(x-3)$	10. $(y-5)(2y+3)$	11. $(4b-3)(b-7)$			
	12. $(5s+2)(s+8)$	13. $(3k-1)(4k+9)$	14. $(8n-5)(3n-6)$			
EXAMPLES 3 and 4 for Exs. 16–26	ERROR ANALYSIS <i>Describe</i> and correct the error in finding the product of the polynomials.					
	15. $(x - 5)(3x + 1)$	16.	$2x^2 - 3x - 4$ $\times \qquad x + 7$			
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\times	$ \begin{array}{r} 14x^2 - 21x - 28 \\ 2x^3 - 3x^2 - 4x \\ \hline 2x^3 + 11x^4 - 25x^2 - 28 \end{array} $			
	(x - 5)(3x + 1) = 3x	x [∠] + 16x + 5				

= STANDARDIZED

TEST PRACTICE

= See WORKED-OUT SOLUTIONS in Student Resources

PROBLEM SOLVING

EXAMPLE 7 for Exs. 49–50

- **49. PICTURE FRAME** You are designing a frame to surround a rectangular picture. The width of the frame around the picture is the same on every side, as shown.
 - **a.** Write a polynomial that represents the total area of the picture and the frame.
 - **b.** Find the combined area of the picture and the frame when the width of the frame is 4 inches.

- **50. SWIMMING POOL** A rectangular swimming pool is bordered on one side by a deck. A contractor is hired to build a walkway along the remaining three sides of the pool. The width of the walkway is the same on every side, as shown.
 - **a.** Write a polynomial that represents the total area of the pool and the walkway.
 - **b.** Find the combined area of the pool and the walkway when the width of the walkway is 5 feet.

51. **SOUND RECORDINGS** During the period 1997–2002, the amount of money *R* (in millions of dollars) spent on sound recordings in the U.S. and the percent *P* (in decimal form) of this amount spent by people who are between 15 and 19 years old can be modeled by

 $R = -336t^2 + 1730t + 12,300$ and $P = 0.00351t^2 - 0.0249t + 0.171$

where *t* is the number of years since 1997.

- **a.** Find the values of *R* and *P* for t = 0. What does the product $R \cdot P$ mean for t = 0 in this situation?
- **b.** Write an equation that models the amount spent on sound recordings by people who are between 15 and 19 years old as a function of the number of years since 1997.
- **c.** How much money did people between 15 and 19 years old spend on sound recordings in 2002?
- **52.** ★ **SHORT RESPONSE** During the period 1980–2002, the number *H* (in thousands) of housing units in the U.S. and the percent *P* (in decimal form) of housing units that were vacant can be modeled by

H = 1570t + 89,000 and P = 0.0013t + 0.094

where *t* is the number of years since 1980.

- **a.** Write an equation that models the number (in thousands) of vacant housing units as a function of the number of years since 1980. *Explain* how you found this equation.
- b. How many housing units were vacant in 2002?

53. ★ **EXTENDED RESPONSE** The bar graph shows the number of households with a television for various years during the period 1990–2001.

- **a.** Find a linear equation that models the number of households *T* (in millions) with a television as a function of the number of years since 1990. *Explain* how you found your model.
- **b.** During the period 1990–2001, the percent *P* (in decimal form) of television households that also have a VCR can be modeled by

$$P = -0.0015t^2 + 0.032t + 0.069$$

where *t* is the number of years since 1990. Write an equation that models the number of households *V* (in millions) with a VCR and a television as a function of the number of years since 1990.

- **c.** Use the equation from part (b) to predict the number of households that had a VCR and a television in 2002 and in 2005.
- **54. CHALLENGE** For the period 1990–2001, the total United States energy consumption *C* (in quadrillion British Thermal Units, or BTU) and the percent *P* of the total energy that was consumed in the United States for industrial purposes can be modeled by

$$C = 1.5t + 84$$
$$P = -0.05t^2 + 0.25t + 38$$

where *t* is the number of years since 1990.

- **a.** Find the percent of total energy that was consumed in the United States for industrial purposes in 2000.
- **b.** Write an equation that gives the total energy (in quadrillion BTU) consumed in the United States for industrial purposes as a function of the number of years since 1990. To write the equation, you may need to rewrite one of the given equations.