\qquad

LESSON

Challenge Practice

8.3

In Exercises 1-5, simplify by multiplying and then adding and subtracting. Write the result as a polynomial in standard form.

1. $(2 x+3)^{2}+(2 x-3)^{2}$
2. $\left(-x^{2}+1\right)^{2}+\left(x^{2}+2\right)^{2}$
3. $(a x+b y)^{2}+(a x-b y)^{2}$
4. $\left(a x^{2}+b y^{2}\right)^{2}+\left(a x^{2}-b y^{2}\right)^{2}$
5. $(x+5)^{2}-(x-25)(x+1)$
6. Show that $(a-b+c)^{2}=a^{2}+b^{2}+c^{2}-2 a b+2 a c-2 b c$.

In Exercises 7 and 8, use the result from Exercise 6 to find the product.

7. $(3 x-2 y+5 z)^{2}$
8. $(a x-b y+c z)^{2}$

In Exercises 9-12, assume \boldsymbol{x} is a positive integer.

9. Find an expression for the product of three consecutive even integers, with $2 x$ as the smallest of the three integers. Write the result as a polynomial in standard form.
10. Explain why the result from Exercise 9 is an even number.
11. Find an expression for the product of three consecutive odd integers, with $2 x+1$ as the smallest of the three integers. Write the result as a polynomial in standard form.
12. Explain why the result from Exercise 11 is an odd number.
