\qquad
\qquad

LESSON

Practice A

For use with the lesson "Find Special Products of Polynomials"

Find the missing term.

1. $(a-b)^{2}=a^{2}-?+b^{2}$
2. $(m+n)^{2}=m^{2}+\underline{?}+n^{2}$
3. $(x-1)^{2}=x^{2}-?+1$
4. $(x+5)^{2}=x^{2}+?+25$
5. $(x-y)(x+y)=x^{2}-?$
6. $(x-3)(x+3)=x^{2}-?$

Match the product with its polynomial.

7. $(2 x+3)(2 x-3)$
8. $(2 x+3)^{2}$
9. $(2 x-3)^{2}$
A. $4 x^{2}+12 x+9$
B. $4 x^{2}-12 x+9$
C. $4 x^{2}-9$

Find the product of the square of the binomial.

10. $(x+4)^{2}$
11. $(m-8)^{2}$
12. $(a+10)^{2}$
13. $(p-12)^{2}$
14. $(2 y+1)^{2}$
15. $(3 y-1)^{2}$
16. $(10 r-1)^{2}$
17. $(4 n+2)^{2}$
18. $(3 c-2)^{2}$

Find the product of the sum and difference.

19. $(z+5)(z-5)$
20. $(b-2)(b+2)$
21. $(n-8)(n+8)$
22. $(a+10)(a-10)$
23. $(2 x+1)(2 x-1)$
24. $(5 m-1)(5 m+1)$
25. $(4 d+1)(4 d-1)$
26. $(3 p+2)(3 p-2)$
27. $(2 r-3)(2 r+3)$

Describe how you can use mental math to find the product.

28. $13 \cdot 7$
29. $24 \cdot 36$
30. $51 \cdot 69$
31. Total Profit For 1995 through 2005, the number N of units (in thousands) produced by a manufacturing plant can be modeled by $N=3 t+2$ and the profit per unit P (in dollars) can be modeled by $P=3 t-2$ where t is the number of years since 1995. Write a polynomial that models the total profit T (in thousands of dollars).
32. Eye Color In humans, the brown eye gene B is dominant and the blue eye gene b is recessive. This means that humans whose eye genes are $B B, B b$, or $b B$ have brown eyes and those with $b b$ have blue eyes. The Punnett square at the right shows the results of eye colors for children of parents who each have one B gene and one b gene.
a. Write a polynomial that models the possible gene combinations of a child.

b. What percent of the possible gene combinations results in a child with blue eyes?
