GOAL

Use special product patterns to multiply polynomials.

Square of a Binomial Pattern

Algebra

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a - b)^2 = a^2 - 2ab + b^2$$

Example

$$(x+3)^2 = x^2 + 6x + 9$$

$$(3x - 2)^2 = 9x^2 - 12x + 4$$

EXAMPLE 1

Use the square of a binomial pattern

Find the product.

a.
$$(7x + 2)^2$$

b.
$$(6x - 5y)^2$$

Solution

a.
$$(7x + 2)^2 = (7x)^2 + 2(7x)(2) + 2^2$$

= $49x^2 + 28x + 4$

Square of a binomial pattern Simplify.

b.
$$(6x - 5y)^2 = (6x)^2 - 2(6x)(5y) + (5y)^2$$

= $36x^2 - 60xy + 25y^2$

Square of a binomial pattern Simplify.

Exercises for Example 1

Find the product.

1.
$$(y+9)^2$$

2.
$$(3z + 7)^2$$

3.
$$(2w-3)^2$$

4.
$$(10r - 3s)^2$$

Sum and Difference Pattern

Algebra

$$(a + b)(a - b) = a^2 - b^2$$

Example

$$(x+5)(x-5) = x^2 - 25$$

LESSON

Study Guide continued

For use with the lesson "Find Special Products of Polynomials"

EXAMPLE 2

Use the sum and difference pattern

Find the product.

a.
$$(m+9)(m-9)$$

b.
$$(4n-3)(4n+3)$$

Solution

a.
$$(m+9)(m-9) = m^2 - 9^2$$
 Sum and difference pattern $= m^2 - 81$ Simplify.

b.
$$(4n-3)(4n+3) = (4n)^2 - 3^2$$
 Sum and difference pattern $= 16n^2 - 9$ Simplify.

Exercises for Example 2

Find the product.

5.
$$(g+11)(g-11)$$

6.
$$(7f-1)(7f+1)$$

7.
$$(2h+9)(2h-9)$$

8.
$$(6k - 8)(6k + 8)$$

EXAMPLE 3

Use special products and mental math

Use special products to find the product of 37 \cdot 43.

Solution

Notice that 37 is 3 less than 40 while 43 is 3 more than 40.

$$37 \cdot 43 = (40 - 3)(40 + 3)$$
 Write as a product of difference and sum.
 $= 40^2 - 3^2$ Sum and difference pattern
 $= 1600 - 9$ Evaluate powers.
 $= 1591$ Simplify.

Exercises for Example 3

Describe how you can use special products to find the product.