\qquad

LESSON

Challenge Practice

For use with the lesson "Solve Polynomial Equations in Factored Form"

In Exercises 1-5, find a polynomial that has these given roots. Write the result as a polynomial with \boldsymbol{x} as the variable, in both factored form and standard form.

1. $1,2,3$
2. $-1,0,1$
3. $0,0,1,1$
4. $0, \frac{1}{2}, 2$
5. $-1,-\frac{2}{3},-3$
6. A rectangular pool whose long side is twice as long as its narrow side is being built. There will be a paved border around all sides of the pool that is 5 feet wide around three sides and 10 feet wide around one of the narrow ends to accommodate a diving platform. The total area of the pool and the border is 1650 square feet. Write an equation for the area of the pool and border where x represents the length of the short side of the pool.
7. In Exercise 6, find the length of the sides of the pool.
8. Consider the equation $x^{3}-x y^{2}=0$. What are the possible values of x and y that make the equation hold true?
9. Consider the equation $x^{4}-x^{2} y^{2}=0$. What are the possible values of x and y that make the equation hold true?
10. Consider the equation $\left(x^{2}+y^{2}\right)\left(x^{2}-y^{2}\right)=0$. What are the possible values of x and y that make the equation hold true?
