\qquad
\qquad

GOAL Solve polynomial equations.

Vocabulary

The zero-product property is used to solve an equation when one side is zero and the other side is a product of polynomial factors. The solutions of such an equation are also called roots.

The height of a projectile can be described by the vertical motion model: $h=-16 t^{2}+v t+s$, where t is the time (in seconds) the object has been in the air, v is the initial vertical velocity (in feet per second), and s is the initial height (in feet).

EXAMPLE 1 Use the zero-product property

Solve $(x-3)(x+6)=0$.

Solution

$$
\begin{array}{rlrlrl}
(x-3)(x+6) & =0 & & \text { Write original equation. } \\
x-3 & =0 & \text { or } & x+6 & =0 & \\
\text { Zero-product property } \\
x & =3 & \text { or } & & x & =-6
\end{array} \begin{array}{ll}
\text { Solve for } x .
\end{array}
$$

The roots of the equation are 3 and -6 .
CHECK Substitute each root into the original equation to check.

$$
\begin{aligned}
(3-3)(3+6) & \stackrel{?}{=} 0 & (-6-3)(-6+6) & \stackrel{?}{=} 0 \\
0 \cdot 9 & \stackrel{?}{=} 0 & -9 \cdot 0 & \stackrel{?}{=} 0 \\
0 & =0 \checkmark & 0 & =0 \checkmark
\end{aligned}
$$

Exercises for Example 1

Solve the equation.

1. $(m-7)(m-9)=0$
2. $(5 n+10)(4 n+12)=0$

EXAMPLE 2 Solve an equation by factoring

Solve $6 x^{2}+12 x=0$.
$6 x^{2}+12 x=0 \quad$ Write original equation.
$6 x(x+2)=0$
Factor left side.
$6 x=0 \quad$ or $\quad x+2=0 \quad$ Zero-product property
$x=0 \quad$ or $\quad x=-2 \quad$ Solve for x.
The roots of the equation are 0 and -2 .

Algebra 1

\qquad

Study Guide continued
For use with the lesson "Solve Polynomial Equations in Factored Form"

EXAMPLE 3 Solve an equation by factoring

Solve $9 \boldsymbol{y}^{\mathbf{2}}=\mathbf{2 1} \boldsymbol{y}$.

$$
\begin{array}{rlrl}
9 y^{2}=21 y & & \text { Write original equation. } \\
9 y^{2}-21 y=0 & & \text { Subtract } 21 y \text { from each side. } \\
3 y(3 y-7)=0 & & \text { Factor left side. } \\
3 y=0 \quad \text { or } & 3 y-7=0 & & \text { Zero-product property } \\
y=0 \quad \text { or } & y=\frac{7}{3} & & \text { Solve for } y .
\end{array}
$$

The roots of the equation are 0 and $\frac{7}{3}$.

Exercises for Examples 2 and 3

Solve the equation.

3. $q^{2}+16 q=0$
4. $4 k^{2}-8 k=0$
5. $12 h^{2}=36 h$

EXAMPLE 4 Solve a multi-step problem

Jump Rope A child jumping rope leaves the ground at an initial vertical velocity of 8 feet per second. After how many seconds does the child land on the ground?

Solution

STEP 1 Write a model for the height above the ground.

$h=-16 t^{2}+v t+s$	
$h=-16 t^{2}+8 t+0$	
$h=-16 t^{2}+8 t$	
Substical motion model 8 for v and 0 for s.	
Simplify.	

STEP 2 Substitute 0 for h. When the child lands, the child's height above the ground is 0 feet. Solve for t.

$$
\begin{array}{rll}
0=-16 t^{2}+8 t & \text { Substitute } 0 \text { for } h . \\
0=8 t(-2 t+1) & \text { Factor right side. } \\
8 t=0 \quad \text { or } \quad-2 t+1=0 & \text { Zero-product property } \\
t=0 \quad \text { or } & t=\frac{1}{2} & \text { Solve for } t .
\end{array}
$$

The child lands on the ground $\frac{1}{2}$ second after the child jumps.

Exercise for Example 4

6. In Example 4, suppose the initial velocity is 10 feet per second. After how many seconds will the child land on the ground?
