\qquad

GOAL Factor trinomials of the form $x^{\mathbf{2}}+b x+c$.

EXAMPLE 1 Factor when band care positive

Factor $x^{2}+10 x+24$.

Solution

Find two positive factors of 24 whose sum is 10 . Make an organized list.

Factors of 24	Sum of factors
24,1	$24+1=25$
12,2	$12+2=14$
8	\boldsymbol{x}
8	$8+3=11$

The factors 6 and 4 have a sum of 10 , so they are the correct values of p and q.
$x^{2}+10 x+24=(x+6)(x+4)$
CHECK $\quad(x+6)(x+4)=x^{2}+4 x+6 x+24 \quad$ Multiply binomials.

$$
=x^{2}+10 x+24 \checkmark \quad \text { Simplify } .
$$

EXAMPLE 2 Factor when b is negative and \boldsymbol{c} is positive

Factor $w^{2}-10 w+9$.
Solution
Because b is negative and c is positive, p and q must be negative.

Factors of 9	Sum of factors
$-9,-1$	$-9+(-1)=-10$
$-3,-3$	$-3+(-3)=-6$
\boldsymbol{x} correct sum	

The factors -9 and -1 have a sum of -10 , so they are the correct values of p and q.
$w^{2}-10 w+9=(x-9)(x-1)$

Exercises for Examples 1 and 2

Factor the trinomial.

1. $x^{2}+10 x+16$
2. $y^{2}+6 y+5$
3. $z^{2}-7 z+12$
\qquad

EXAMPLE 3 Factor when b is positive and \boldsymbol{c} is negative

Factor $k^{\mathbf{2}}+\mathbf{6 x} \mathbf{- 7}$.

Solution

Because c is negative, p and q must have different signs.

Factors of 7	Sum of factors	x
$-7,1$	$-7+1=-6$	
7, -1	$7+(-1)=6$	

The factors 7 and -1 have a sum of 6 , so they are the correct values of p and q. $k^{2}+6 k-7=(x+7)(x-1)$

Exercises for Example 3

Factor the trinomial.

4. $x^{2}-10 x-11$
5. $y^{2}+2 y-63$
6. $z^{2}-5 z-36$

EXAMPLE 4 Solve a polynomial equation

Solve the equation $h^{2}-4 h=21$.

Solution

$h^{2}-4 h$	$=21$		Write original equation.
$h^{2}-4 h-21$	$=0$	Subtract 21 from each side.	
$(h+3)(h-7)=0$	Factor left side.		
$h+3=0$	or	$h-7=0$	Zero-product property
$h=-3$	or	$h=7$	

The roots of the equation are -3 and 7 .

Exercise for Example 4

7. Solve the equation $x^{2}+30=11 x$.
